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materials and their future perspectives

Manni Li,a Weiqi Lin,a Yurong Ji,a Lianyu Guan,a Linyuan Qiu,a Yuhong Chen,a

Qiaoyu Lua and Xiang Ding *abc

P2-type layered materials (NaxTMO2) have become attractive cathode electrodes owing to their high

theoretical energy density and simple preparation. However, they still face severe phase transition and

low conductivity. Current research on NaxTMO2 is mostly focused on the modification of bulk materials,

and the application performances have been infrequently addressed. This review summarizes the

information on current common P2-NaxTMO2 materials and discusses their sodium-storage

mechanisms. Furthermore, modification strategies to improve their performance are addressed for

practical applications based on a range of key parameters (output voltage, specific capacity, and

lifespan). We also discuss the future development trends and application prospects for P2 cathode

materials.
1. Introduction

To date, lithium-ion batteries (LIBs) have been extensively
developed and applied in many areas, thus playing a key role in
supporting the development of society. However, the low
abundance (20 ppm), difficult exploitation and low recovery
rates of lithium resources limit LIBs from meeting the
requirements of wearable equipment, electric cars (ECs), smart
grids and plant-scale energy-storage devices. SIBs have emerged
as an alternative and have attracted widespread attention owing
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to the abundance of Na resources. SIBs are expected to replace
LIBs in many elds, and research on them is growing rapidly.

Cathode materials profoundly affect the prime costs and
capability of SIBs; therefore, researching and developing low-
cost and long-life cathode materials is crucial for the develop-
ment of SIBs. Such cathode materials include layered transition
metal oxides (LTMOs),1–10 tunnel-type oxides,11–20 iron–uorine-
based Prussian blue analogues (PBAs)9,10,21–29 and polyanionic
compounds.10,30–40 Among these, LTMOs have a higher specic
capacity and energy density (Table 1).

Layered NaxTMO2 (Co, Fe, Mn, Ni, Ti, and Cr) is an embedded
or intercalated compound. Delmas et al. rst proposed the
arrangement of Na+ between TMO6 layers and divided it into P
phase and O phase.45 As shown in Fig. 1, the number following O
or P represents the stacking arrangement of oxygen elements,
where Na+ in P-phase NaxTMO2 occupies the triangular prism
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Table 1 Comparison of some selected cathodes

Materials Voltage (V)
1st capacity
(mA h g−1) Lifespan (%@cycles) Ref.

Na0.67Ni0.33Mn0.67O2 2.5–4.35 150 90%@100 41
Na0.44MnO2 2.0–3.8 113 82.3%@200 42
Na2Mn[Fe(CN)6] 2.0–4.2 154 43.2% @100 43
Na3V2(PO4)3 2.3–4.1 85.6 65.5%@100 44

Fig. 1 Classification of Na–TM–O electrodes with TMO6-octahedra
and phase transformation. Adapted with permission from ref. 46,
Copyright {2014} American Chemical Society.46

Fig. 2 Schematic of the modification strategies for P2-NaxTMO2
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gap position, while Na+ in O-phase NaxTMO2 occupies the octa-
hedral gap position between TMO6 layers.46 Compared with other
materials, P2 layered materials have a higher discharge
capacity,47,48 better cycling stability, and superior ionic conduc-
tivity at low Na+ concentrations.49,50 NaxTMO2 is commonly
prepared via solid-phase, sol–gel and hydrothermal methods.
The most common method is the high-temperature solid-phase
method, through which powder particles are prepared without
agglomeration via a good lling and simple preparation process.
However, the powder is not ne enough and is easily mixed with
impurities. When constructing the P2 phase, this may cause
a slippage of the layer interface. Compared to the solid-phase
method, the sol–gel method allows for an easier chemical reac-
tion and requires a lower synthesis temperature. Further,
homogeneous mixing between reactant molecules during the
formation of a gel leads to the better air stability of NaxTMO2. The
hydrothermal method is less common as it requires higher
humidity, temperature and pressure. However, it yields a product
with high purity, which is favorable for the cyclic stability of
NaxTMO2. In operation, Ni-based P2 phase cathodes have a Ni2+/
Ni4+ redox couple with high voltage plateaus, such as P2-Na2/3Ni1/
3Mn2/3O2 with an average voltage of 3.6 V. Besides, an unfavor-
able P2–O2 phase transition will occur at a 4.22 V high voltage,
24798 | RSC Adv., 2024, 14, 24797–24814
which can lead to volume shrinkage and particle cracks appear-
ing during repeated cycling. Electrochemically active (Co3+ and
Fe3+) and inactive (Li+/Zn2+/Mg2+/Al3+/Ti4+) cationic substitutions
have been adopted to tackle these issues. This paper summarizes
the information on P2-NaxTMO2 and the modication of such
materials containing unitary, binary, ternary, and multi-
components, with an aim to outline and clarify the current
research and look forward to their further development trends
and future prospects (Fig. 2).
2 Progress of P2-type materials
2.1 Unitary NaxTMO2

Initially, researchers studied single transition metal oxide
cathode materials, such as NaCoO2,51–54 NaCrO2,54–57 and
NaNiO2,54,58 drawing on such cathode materials that are widely
used in LIBs (LiCoO2,59–61 LiCrO2,62 and LiNiO2,63–65 etc.). Because
of the larger radius of sodium ions (Na+ : Li+ = 108 : 76 pm), Na+

diffusion is harder and can result in structure collapse. There-
fore, designing a more suitable structure (e.g., larger lattice
parameters) for Na+ (de)intercalation would be desirable.66

P2-type NaxCoO2 is endowed with a simple structure and
competitive capacity.67 More importantly, compared to
cathode materials for SIBs.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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commercial LiCoO2, the Na+ diffusion (DNa
+) for the NaxCoO2

electrode (0.5–1.5× 10−11 cm−2 s−1) is better than Li+ diffusion in
the LiCoO2 electrode (1× 10−11 cm−2 s−1).68 Therefore, increasing
DNa

+ in this type of material has become a research hotspot.
Microspherical P2-NaxCoO2 (S-NCO) possesses an inferior specic
surface (∼2.82 m2 g−1) area and layered structure,69 and also
exhibits competitive electrochemical stability (82.2mA h g−1@300
cycles@720 mA g−1). For obtaining single-phase domains in P2-
NaCrO2, Gan et al. constructed Na+ vacancy ordering by a deiodi-
nation method, demonstrating the system's multiple voltage
mechanism.70 They also proved that structural relaxation as well as
electron transfer were responsible for the de-anodization energy.
NaxMnO2 materials possess the great advantage of the high
abundance of sodium resources. Recently, Zuo's team designed an
efficient water-mediated system to synthesize P2-Na0.67MnO2 (S-
NMO) with a shale structure (Fig. 3),71 and reported it could
regulate the DNa

+ effectively. Further, the S-NMO electrodes dis-
played high cycling (>3000 cycles) and rate capabilities
(100 mA h g−1@960 mA g−1); proving that the superior DNa

+ has
a great inuence on the performances of electrodes.
Fig. 3 Synthetic route for preparing S-NMO. Adapted with permission
from ref. 71, Copyright {2021} Springer Nature.

Fig. 4 (a) Ex situ XRD of Na0.67Ni0.33Mn0.67O2 in the initial cycle.75 (b) Ca
Na0.67MnO2 and P2-Na0.67Cu0.1Mn0.9O2 electrodes; (d) ex situ XPS of P2-
states. Adapted with permission from ref. 76, Copyright {2021} American

© 2024 The Author(s). Published by the Royal Society of Chemistry
2.2 Binary NaxTMO2

To address the problems of unitary NaxTMO2 (e.g., inferior
cycling, poor structural stability, unsatisfactory specic
capacity),72 doping a new TM ion to construct a binary-TM system
is an effective strategy. The resulting synergistic effect of the ions
can improve the electrochemical/structural stabilities.73 The Ni2+/
Ni4+ redox couple can provide a higher working voltage. However,
P2-Na0.67Ni0.33Mn0.67O2 usually exhibits disappointing cycle/rate
abilities, because of drastic phase transformation and its
vulnerable DNa

+.74 When charged to 4.2 V, Na0.67Ni0.33Mn0.67O2

can undergo P2/O2 phase transition, which could be observed
by the appearance of a new (0020) diffraction peak in the XRD
analysis (Fig. 4a).75 For P2-Na0.67Ni0.33Mn0.67O2, Yang's group
systematically studied the optimal synthesis parameters via
orthogonal experiments,77 and reported that an excess Na content
(3%) is able to effectively improve the capacity (159.3 mA h g−1).
Another research study found that the cut-off voltage (up to 4.5 V
or low to 1.5 V) could inuence the P2−O2 transition and Mn4+/
Mn3+ redox reaction.78 Yet another study reported a one-pot
method to obtain porous P2-Na0.67Ni0.33Mn0.67O2 microcuboids
with the {010} plane exposed,79 which exhibited good perfor-
mance (94.6%@1500 cycles@850 mA g−1). Moreover, it was also
reported that the design of porous hierarchical P2-Na2/3Ni1/3Mn2/
3O2 nanobers could primarily stabilize the structure as well as
stimulate electrochemical reactions,80 thereby facilitating superb
rate abilities (73.4 and 166.7 mA h g −1 at 3.4 and 17 mA g−1,
respectively) and signicantly improved cycling performance
(81%@500 cycles). The highly reversible changes in the structure
and Ni/Mn redox during cycling were studied by in situ XRD and
XPS, and it was found that the improved capacity was derived
from the Ni2+/3+ as well as Mn4+/3+ redox reactions (1.5–4.0 V).

Since nickel and cobalt are relatively expensive and toxic, the
use of these elements is not conducive to reducing battery costs
or for the application of such batteries for large-scale energy
lculated lattice parameters from in situ XRD; (c) GITT and DNa
+ of P2-

Na0.67Cu0.1Mn0.9O2 electrodes in pristine, fully charged and discharged
Chemical Society.

RSC Adv., 2024, 14, 24797–24814 | 24799
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storage. Therefore, Chen's group rst investigated the cheap
and non-toxic Cu2+/Cu3+ redox couple as an alternative with
good electrochemical activity.81 They synthesized P2-Na0.68-
Cu0.34Mn0.66O2 by a solid-state method, which showed an initial
specic capacity of 74.5 mA h g −1. Although the specic
capacity of this material was slightly low, their work was
signicant for motivating the exploration of other low-cost and
high-specic-capacity cathode materials; for instance, in
another study, Na0.67Cu0.1Mn0.9O2 was reported to be able to
deliver a high capacity of 222.7 mA h g−1@10 mA g−1@1.5–
4.5 V, and 76% capacity retention @1 A g−1@300 cycles.72 Here,
it was reported that the doping of Cu2+ could inhibit the
consecutive structural transformation and alleviate Jahn–Teller
distortion (Fig. 4b–d), thus improving the whole electro-
chemical performance. This strategy provides a new idea for the
development of P2-NaxTMO2 materials with structural stability
and high energy density.
Fig. 5 (a) charge–discharge curves of NFM and NFMC0.4 at 1C. CV curv
from ref. 84, Copyright {2018} Elsevier B.V. (d) Powder XRD Rietveld refin
first charge/discharge of P2-NRM at 0.2C. (h) GITT results and the DNa

+ co
from ref. 85, Copyright {2020} American Chemical Society.

24800 | RSC Adv., 2024, 14, 24797–24814
2.3 Ternary and multi NaxTMO2

As a typical P2-type layered structure material, Na0.67Ni0.33-
Mn0.67O2 (NNMO) has the advantages of a high theoretical
specic capacity (173 mA h g−1) and working voltage. However,
when charged to 4.2 V, the existence of P2–O3 transition leads to
volume changes, resulting in a poor cycle stability.82 Pahari and
coworkers synthesized P2-Na0.67Ni0.17Ti0.16Mn0.67O2 via a solid-
state reaction method, and reported an initial excellent
discharge capacitance (167 mA h g−1@16mA g−1) at 3.7 V.83 Also,
Na0.67Fe0.3Mn0.3Co0.4O2(NFMC) displayed an excellent cycling
performance (retaining 85.5%@100 cycles@160 mA g−1), and
high rate capabilities (136.7 and 81.1 mA h g−1 at 34 and
850 mA g−1).84 The NFMC cathode delivered higher voltage
plateaus (3.3 V) than that for NFM (2.7 V) as noted through
comparing the charge–discharge curves (Fig. 5a). Further, the
polarization of the NFMC electrode was greatly decreased (Fig. 5b
and c) as the Co substitution increased the DNa

+ in the structure.
es of (b) NFM and (c) NFMC0.4 at 0.1 mV s−1. Adapted with permission
ement pattern; (e) SEM pattern; (f) HRTEM image, and (g) in situ XRD at
efficient of the NRMmaterial in the first cycle. Adapted with permission

© 2024 The Author(s). Published by the Royal Society of Chemistry
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In addition, this study revealed that Co substitution could not
only effectively enhance the electronic conductivity, but also
relieve the polarization of the electrode to some extent.86

The electrical performance of NNMO could be effectively
promoted to a new and higher level by the co-substitution of two
or more transition metals. Compared with NNMO, Cu/Mo co-
substituted P2-type Na0.67Ni0.33Mn0.57Cu0.05Mo0.05O2 could
effectively inhibit the P2/O2 phase transition, leading to an
improvement in the electrochemical performance
(142 mA h g−1@2–4.5 V@34 mA g−1@91.5% capacity reten-
tion).87 Peng et al. synthesized [Na0.67Zn0.05]Ni0.18Cu0.1Mn0.67O2

by doping Cu+ at the transition metal site (2a) and the
uncommon Zn+ at the Na site (2d), achieving stable cycling and
moisture resistance for the rst time.41 Signicantly, in situ XRD
characterization, and measurements of the charge-transfer
kinetics and ion diffusion, as well as microstructural analyses
aer deep cycling, indicated that the specic two-site doping
method could successfully reduce the activation energy of DNa

+

in the bulk material, and suppress the formation of O2 at the
end of charging. Doping Zn+ at the Na site could effectively
reduce d(O–Na–O) and enhance the ‘pillar’ effect of O2−–Zn2+–O2−

electrostatic cohesion, thus strengthening the layered cathode
structure, and inhibiting the generation of cracks, leading to
a superior cycle stability and excellent rate performance. P2-
Na0.75Ni1/3Ru1/6Mn1/2O2(NRM) presented a gratifying capacity
(161.5 mA h g−1), and excellent cyclic performance (79.5%@500
cycles@10C).85 The XRD (Fig. 5d) and HRTEM (Fig. 5f) analyses
indicated that the material had a layered hexagonal structure of
pure P2. As shown in Fig. 5e, NRM particles with diameters in
the range of 1–2 mmwere uniformly distributed. It could be seen
that the (002) and (004) peaks returned to their original posi-
tions (Fig. 5g) aer the rst charging and discharging cycle,
indicating the good cycle performance. The maximum diffusion
coefficient of Na+ was 2.05 × 10−10 cm2 s−1 (Fig. 5h), which is
higher than that of most P2 materials reported previously,88

revealing its faster (de)sodiation process and superior rate
performance. A comparison of unitary, binary, and multi Nax-
TMO2 is given in Table 2.
3 Problems and optimization of P2-
structured materials
3.1 Problems with P2-structured materials

At present, there are still some problems to be solved with P2-
cathode materials. For instance, due to the large radius of
Table 2 Comparison of unitary, binary, and multi NaxTMO2

Type Materials 1st c

Unitary NaxCoO2 175
Na0.67MnO2 181

Binary Na0.67Ni0.33Mn0.67O2 122
Na2/3Ni1/3Mn2/3O2 166.7
Na0.67Cu0.1Mn0.9O2 222

Multi Na0.67Fe0.3Mn0.3Co0.4O2 136.7
Na0.67Ni0.33Mn0.57Cu0.05Mo0.05O2 142

© 2024 The Author(s). Published by the Royal Society of Chemistry
Na+, there are obvious kinetic barriers in the migration process
and possible effects of structural collapse during the
deintercalation/intercalation process, resulting in a poor rate
performance and rapid capacity fading in cycling. Besides, the
majority of P2-phase materials produce phase transformation
when they are charged above 4.2 V, resulting in structural and
volume changes.89 For example, for the P2-Na0.67Ni0.33Mn0.67O2

(P2-NNMO) material, Wang et al. found that the main reason for
the performance decay was the repeated P2–O2 transitions,
which produced an outstanding density of intracrystalline
cracks, ultimately destroying the primary grains.90
3.2 Lattice doping

Currently, lattice doping can address structural changes by sup-
pressing phase transitions.91–101 For example, Li+ doping can
improve the Na-storage capacity of cathode materials.102 For
instance, Wang et al. engineered large-sized K+ into the prismatic
Na+ sites of P2-Na0.612K0.056MnO2, resulting in more favorable
Na+ vacancies,103 which exhibited the highest specic capacity
(240.5 mA h g−1@20 mA g−1) and energy density (654 W h kg−1)
based on the redox of Mn3+/Mn4+. Cheng's group reported an Al-
doped P2-type Na0.6Ni0.3Mn0.7O2 cathode material and investi-
gated the corresponding charge-compensation mechanism.104

Compared to Na0.6Ni0.3Mn0.7O2, Al doping facilitated the revers-
ible oxygen redox reaction through the reductive coupling reac-
tion between the lone O 2p state in the localized conguration of
Na–O–Al and Ni4+. In addition, aluminum doping increased the
interlayer spacing and suppressed the disadvantageous P2/ O2
transition during the deiodination/iodination process, which
greatly improved the cycling and rate performances. The Na0.67-
Ni0.31Mn0.67Y0.02O2 material synthesized by Kim et al. was found
to have strong Y–O bonding, leading to a very stable structure.105

In addition, it was encased by Y2O3, which acted as a protective
layer. Due to the large ionic radius of the Y ion (0.90 Å), the
atomic charges of Ni, Mn, and O were altered. The Y ion was also
used as a protective layer. Meanwhile, Rb2+ doping in Na0.78-
Ni0.32Mn0.68O2 enhanced the mobility of Na+ and induced
atomic-scale surface reorganization, which prevented the transi-
tion metals from dissolving into the electrolyte during cycling
(Fig. 6a). In particular, it can be seen that it exhibited superior
performance with 76% capacity retention at −40 °C (1800
cycles@368 mA g−1) (Fig. 6b). According to the Zn/Mg dual-
doping strategy with bifunctional effects, Huang and coworkers
synthesized Na0.67Mn0.7Zn0.15Mg0.15O2 via a facile co-
precipitation method.97
apacity (mA h g−1) Lifespan (%@cycles) Ref.

82%@300 70
79%@3000 71
94.6%@1500 79
81%@500 80
76%@300 72
85.5%@100 84
91.5%@500 85

RSC Adv., 2024, 14, 24797–24814 | 24801
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Fig. 6 (a) Schematic showing the protective effect on the main structure via surface modification. (b) Long-cycling stability at rates of 92 and
368 mA g−1 at −40 °C. Adapted with permission from ref. 106, Copyright {2022} Springer Nature. Charge/discharge profiles of (c) NMMT at 0.1C
during the first 15 cycles in the voltage range of 2.0–4.3 V; (d) rate performances of the NMMT cathode; (e) in situ XRD tests upon charging/
discharging of the NMMT cathode between 2.0 and 4.3 V versus Na+/Na. Adapted with permission from ref. 107, Copyright {2022} American
Chemical Society. (f) In situ XRD patterns of NaNMTi0.3OF during the first charge/discharge process. Adapted with permission from ref. 108,
Copyright {2022} Elsevier B.V.
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Compared with P2-Na0.67MnO2 and single-ion (Zn/Mg)-
doped specimens, Zn/Mg dual-doping broadens the distance
between the crystal planes and supplies a spacious ion-diffusion
channel for rapid DNa

+. It also has less Mn3+/Mn4+ and a higher
lattice oxygen content, which is instrumental for increasing the
structural stability. It was proved that the Zn/Mg dual-doped
electrode displayed excellent rate performance
(67.2 mA h g−1@1.7 A g−1) and a decent cycling stability (93.8%
capacity retention@170 mA g−1@100 cycles). This work thus
provides a promising avenue for perfecting the performance
enhancement of layered cathode materials. Based on the
synergistic effect of Mg and Ti co-doping,107 Li's group designed
and investigated Na2/3[Ni2/9Mg1/9Mn5/9Ti1/9]O2 (NMMT), which
displayed an apparent capacity activation during the rst cycles
(113 mA h g−1@17 mA g−1) (Fig. 6c) and outstanding rate ability
(50 mA h g−1@850 m A g−1@500 cycles) between 2.0–4.3 V
(Fig. 6d). Furthermore, as shown by the in situ XRD character-
ization (Fig. 6e), single-phase electrochemical reactions
occurred during the Na+ deintercalation.

Based on the Ti4+/F− co-doping strategy, P2-Na0.67Ni0.33-
Mn0.37Ti0.3O1.9F0.1 showed a much strengthened sodium-
storage performance within the 2.0–4.4 V range, including
a certain cycling ability (77.2%@300 cycles@300 mA g−1) as well
as an excellent rate capability (87.7 mA h g−1@1.02 A g−1).108 In
situ XRD (Fig. 6f) analysis showed that the Ti4+/F− co-doping
could inhibit both P2 / O2 transitions and Na+/vacancy
ordering, resulting in fast Na+ diffusion and a stable phase
structure. This study offers a novel idea for the development of
layered cathode materials with anion–cation synergetic contri-
butions (Table 3).
3.3 Surface modication

Currently, energy-storage systems with greatly reduced costs
and higher stability and safety can be developed via doping
cations or anions. However, the large structural change in the
cycle process can result in rapid capacity deterioration and an
inferior cycle life. In addition, the high air sensitivity of systems
can have a negative impact on the electrochemical perfor-
mance. Therefore, researchers have modied the electrode
surface to reduce the side reactions between the cathode
material and electrolyte during cycling process, so that struc-
tural stability, ion diffusion ability and electronic conductivity
are improved.109,110 For instance, a carbon coating can be used to
Table 3 Typical dopants in P2-type materials

Materials Dopant Voltage (V)

Na0.67[Li0.22Mn0.78]O2 Ni2+ 1.5–4.6
Na0.67MnO2 K+ 1.8–4.3
Na0.67Ni0.33Mn0.67O2 Al3+ 1.5–4.5
Na0.67Ni0.33Mn0.67O2 Y2+ 2.0–4.5
Na0.78Ni0.32Mn0.68O2 Rb2+ 2.4–4.15
Na0.67MnO2 Zn2+/Mg2+ 2.0–4.5
Na2/3Ni1/3Mn2/3O2 Mg2+/Ti4+ 2.0–4.3
Na0.67Ni0.33Mn0.67O2 Ti4+/F− 2.0–4.4

© 2024 The Author(s). Published by the Royal Society of Chemistry
enhance the electrochemical performance, but the inferior
mechanical properties of carbon make it harder to improve the
cycle stability.111

Applying a TMO coating on the surface of a P2 cathode is
another active method, which can raise the conductivity and
electrochemical performance. It was reported that P2-type Na2/
3Fe1/2Mn1/2O2 materials can be synthesized by ultrasonic jet
pyrolysis followed by solid-state sintering.112 In addition, a thin
Al2O3 layer can be formed on the surface of Na2/3Fe/1/2Mn1/2O2,
which inhibits the formation of Na2CO3-H2O and avoids its
exposure to air, thus improving the storage performance. Yang
et al. coated ZnO, a semiconducting material with excellent
electrical conductivity, on a P2 layer of Na2/3Ni1/3Mn2/3O2, which
could signicantly inhibit the peeling phenomenon and main-
tain the morphology and structure of the electrode well.113 In
addition, part of the Zn2+ could nds its way into the transition
metal oxide (TMO2) layer, realizing in an improvement of the
crystal stability. Based on the synergistic effect of the ZnO
coating and Zn2+ doping, the material exhibited excellent
cycling performance (75%@200 cycles) and rate performance.
To address the defects of the P2-Na0.67Ni0.17Co0.17Mn0.66O2

cathode, a dual modication method incorporating Mg/Ti co-
doping and MgO surface coating was reported.114 The results
showed that the P2 structure could be stabilized by Mg2+/Ti4+

co-substitution, and that the MgO layer could effectively prevent
the surface from being corroded by HF, while promoting Na+

migration. It displayed a 111.6 mA h g−1 initial discharge
capacity and retained 90.6% of this at a high current density of
100 mA g−1, which evidently surpassed the performance of
Na0.67Ni0.17Co0.17Mn0.66O2. The obvious improvement could be
attributed to the synergistic effect of Mg2+/Ti4+ co-substitution
and the MgO surface coating.

In addition, coating a conductive polymer could also effec-
tively enhance the electrochemical performances. Applying
a polydopamine-derived carbon coating was reported to be
a signicant strategy to improve the interfacial stability of P2-
type Na0.80Ni0.22Zn0.06Mn0.66O2.115 The application of consecu-
tive and homogeneous carbonized PDA (C-PDA) layers with
a thickness of ∼5 nm could inhibit Na+ extraction from the
surface of P2-Na0.80Ni0.22Zn0.06Mn0.66O2 particles during the
electrode fabrication process and the formation of electro-
chemically harmful Na2CO3/NaOH species. Compared with
pristine samples, the material exhibited a higher discharge
capacity (124 mA h g−1@12 mA g−1), superior rate capability
1st capacity
(mA h g−1) Lifespan (%@cycles) Ref.

160 73%@300 96
240.5 98.2%@100 103
213.6 58.7%100 104
126.4 63.4%60 105
96.6 76%@1800 106
166.2 93.8%@100 97
113 84.3%@500 107
140.3 77.2(300) 108
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(62 mA h g−1@1536 mA g−1), and excellent cycle stability (90.7%
capacity retention@100 cycles). These results show that proper
surface protection can prevent the formation of side products,
which is crucial to improving the performance of P2 oxide
materials. Without sacricing the high-voltage performance,
Yuan et al. stabilized the lattice oxygen in a composite material
by applying a small amount of Sn substitution and by further
protecting the particle surface with a polypyrrole (PPy)
coating.116 The prepared Na0.67Ni0.33Mn0.63Sn0.04O2@PPy
(3.3 wt%) composite displayed superb rate performance (137.6/
120.0 mA h g−1@10/100 mA g−1) with 82.5% capacity retention
(100 mA g−1@100 cycles). The surface particles of the Na0.67-
Ni0.33Mn0.63Sn0.04O2@PPy (3.3 wt%) composite did not fall off,
indicating that the conductive PPy coating could not only
improve the cycling stability, but also played a role as a capsule
shell, inhibiting particles from falling off and protecting parti-
cles from electrolyte erosion. A NASICON-type NaTi2(PO4)3
(NTP) nanoshell was coated on the surface of P2-Na0.67Co0.2-
Mn0.8O2 (NCM) (Fig. 7a) to promote its performance as a new
cathode.117 The NCM@NTP7 sample displayed outstanding
electrochemical charge/discharge proles, with a high capacity
(152.4 mA h g−1@34 mA g−1) and 86.7% capacity retention
(85 mA g−1@150 cycles) at room temperature. The optimized
coating could effectively inhibit side reactions and greatly
improve the cyclic stability. Meanwhile, the NTP could accel-
erate the Na+-migration kinetics of the host material, providing
perfect DNa

+ channels and a higher electronic conductivity (Rct

= 26.4 U, Fig. 7b, DG = 4.04 × 10 −10 cm2 s−1, Fig. 7c). It is
apparent that PPy coating is a viable method for developing
stable outstanding voltage transition metal oxide cathode
Fig. 7 (a) Interface model of the NCM@NTP7 material; (b) EIS plot, and t
GITT curves and corresponding D values of (c) NCM@NTP7. Adapted wi

24804 | RSC Adv., 2024, 14, 24797–24814
materials. Some typical reported modications of P2-type
materials are listed in Table 4.
3.4 High entropy modication

Recently, the method of building high entropy oxides has been
proven to be another possible strategy to improve the perfor-
mance of O3-layered oxide cathodes.118–122 The use of high
entropy P2-Na0.6(Ti0.2Mn0.2Co0.2Ni0.2Ru0.2)O2 can tune the
entropic stabilization of the crystal structure and the diffusion
activation energy barriers, leading to superior rate performance
at a very high rate (68 mA h g−1 at 86C).123 This work demon-
strated an advanced fast-charging layered oxide cathode for
SIBs. The entropy-tuned P2-Na0.62Mn0.67Ni0.23Cu0.05Mg0.07-
Ti0.01O2 could expose more {010} active facet and improve the
structural stability.124 The cathode exhibited outstanding elec-
trochemical performance, especially cycling stability (75%
capacity retention@2000 cycles@1.2 A g−1). In situ HEXRD tests
(Fig. 8a) were performed, revealing that no new phase formation
or phase transition occurred. Also, the structure evolution was
highly reversible during the charging and discharging Na+ (de)
intercalation process (Fig. 8b), leading to a superior electro-
chemical performance. Therefore, high entropy modication
represents a new method for advanced P2-layered cathode
materials (Table 5).
3.5 Composite phase modication

A composite phase strategy127–129 (such as P2/P3, P2/O3, and P2/
P3/O3) has also been proposed to enhance the electrochemical
performance of P2-NaxTMO2 (Table 6).
he inset image shows the equivalent circuit for NCM and NCM@NTP7;
th permission from ref. 117, Copyright {2020} Elsevier B.V.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 6 Typical multi-phase layered materials for sodium-ion batteries

Materials Voltage (V) 1st capacity (mA h g−1) Lifespan (%@cycles) Ref.

P2/P3-Na0.67Mn0.64Co0.30Al0.06O2 1.5–4.0 160 81%@200 130
P2/P3-Na0.5Mg0.2Co0.15Mn0.65O2 1.5–4.3 136 89%@100 131
P2/O3-Na0.76Ni0.33Mn0.50Fe0.10Ti0.07O2 2.2–4.3 144 82%@100 132
P2/O3-Na0.8Li0.2Ni0.33Mn0.67O2 2.0–4.3 133 80%@120 133
P2/O3-Na0.80Li0.13Ni0.20Fe0.10Mn0.57O2 2.0–4.5 172 89%@100 134
P2/O3-Na7/9Ni2/9Mn4/9Fe1/9Mg1/9Li1/9O2 2.0–4.4 170 72.1%@400 135
P3/P2/O3-Na0.674Ni0.319Mn0.590O2 2.0–4.2 100 67%@200 136

Table 4 Typical modifications in P2-type materials

Materials Dopant Coating 1st capacity (mA h g−1) Lifespan (%@cycles) Ref.

Na2/3Fe1/2Mn1/2O2 Al2O3 146.7 84.7%@40 112
Na2/3Ni1/3Mn2/3O2 Zn2+ ZnO 162 75%@200 113
Na0.67Ni0.17Co0.17Mn0.66O2 Mg2+/Ti4+ MgO 111.6 90.6%@300 114
Na0.80Ni0.28Mn0.66O2 Zn2+ C-PDA 124 62%@100 115
Na0.67Ni0.33Mn0.67O2 Sn4+ PPy 137.6 82.5%@100 116
Na0.67Co0.2Mn0.8O2 NaTi2(PO4)3 152.4 86.7%@150 117

Fig. 8 (a) Waterfall plot of the in situ HEXRD patterns for CuMgTi-571 within the range 2.0–4.3 V. (b) Evolution of the cell parameters and cell
volume during the charge/discharge process. Adapted with permission from ref. 124, Copyright {2022}, Springer Nature.

Table 5 Typical high-entropy P2-type materials

Materials Voltage (V) 1st capacity (mA h g−1) Lifespan (%@cycles) Ref.

Na0.6(Ti0.2Mn0.2Co0.2Ni0.2Ru0.2)O2 1.5–4.5 164 70%@40 123
Na0.62Mn0.67Ni0.23Cu0.05Mg0.07Ti0.01O2 2.0–4.3 148 75%@2000 124
Na2/3[Ni1/4Mn1/2Ti1/6Zn1/12]O2 2.5–4.5 114 100%@40 125
Na2/3Li1/6Fe1/6Co1/6Ni1/6Mn1/3O2 2.0–4.5 171 89.3%@90 126
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Attributed to the fast Na+ diffusion and stable crystal struc-
ture, P2/P3-Na0.67Mn0.64Co0.30Al0.06O2 displayed an outstanding
rate capability (83 mA h g−1 at 1700 mA g−1) and distinguished
cycling stability (81%@200 cycles@1000 mA g−1).130 In situ XRD
tests conrmed there were no new peaks except for the P2/P3
phases and that the Jahn–Teller effect was largely relieved
© 2024 The Author(s). Published by the Royal Society of Chemistry
during the charge/discharge process, thus realizing a superior
long cycling ability. Wang's group explored the sodium-storage
mechanism of the P2/O3-Na0.76Ni0.33Mn0.50Fe0.10Ti0.07O2

cathode.132 In operando XRD measurements revealed the
reversible structural transformation of P2/O3–P2/O3/P3–P2/P3–
P2/Z/O30–Z/O30, attributed to the Ni2+/Ni3.5+, Fe3+/Fe4+, and
RSC Adv., 2024, 14, 24797–24814 | 24805
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Fig. 9 (a) HRTEM images of P2/P3/O3-NNMO; (b) ex situ XRD patterns (right) of P3/P2/O3-NNMO at different voltages between 2.0 and 4.2 V
during the first charge/discharge process. Adapted with permission from ref. 136, Copyright {2022}, Wiley-VCH.

Fig. 10 Gravimetric energy density (W h kg−1) for P2-NaxMO2 with
different numbers of transition metals in half-cell systems.
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Mn3.8+/Mn4+ redox couples during the Na+-(de)intercalation
process. This also led to its high capacity (144 mA h g−1 at
42 mA g−1) and dramatic rate performance (82 mA h g−1 at
210 mA g−1). This work provides a novel idea for the design of
high-performance layered multi-phase structures. Because of
the staggered arrangement of different phase structures, the P3/
P2/O3-Na0.674Ni0.319Mn0.590O2(NNMO) cathode displayed an
improved rate performance (100mA h g−1 at 750 mA g−1).136 The
HRTEM image of P3/P2/O3-NNMO clearly showed the co-
existence of P2 and O3 phases (Fig. 9a), while ex situ XRD
(Fig. 9b) revealed that P3/P2/O3-NNMO experienced a reversible
conversion process of P3/P2/O3—P3/P2—P3/P2/P30—P3/P2/
O30—P3/P2/P30—P3/P2—P3/P2/O3 during the rst cycle. Also,
the P2–O2 phase transition was inhibited, leading to the
improved cycling stability (80 mA h g−1@200
cycles@30 mA g−1). The work offers a model to investigate the
independent inuence of the structure of the electrode on its
electrochemical performance. Therefore, the strategy of
composite phase modication provides a new approach to
suppress irreversible phase transitions and enhance the
performance of layered oxide cathodes.137

In summary, the modication methods broadly include
structural lattice doping, applying a coating on the surface of
the material particles, and composite phase modication. In
particular, surface coating can improve the interfacial stability
of a material, mitigate the side reactions at the electrode/
electrolyte interface, and improve the ionic/electronic conduc-
tance at the interface. The drawback is that cladding cannot
modulate the lattice, i.e., it cannot regulate the spatial and
electronic effects of the internal structure of the material.
Conversely, ion doping of the lattice of the electrode material
with ions with a different valence and radius can play a role in
expanding the ion-diffusion channels, improving the conduc-
tivity of the bulk phase of the material, and enhancing the
structural stability. Moreover, multi-doping has signicant
superiority over single doping, such as an enhanced effect from
synergistic mechanisms, providing multiple ions with a richer
electron cloud density, and the different radii of the different
ions, which can endow the structure with stronger toughness.
24806 | RSC Adv., 2024, 14, 24797–24814
4 Conclusion and future perspectives

SIBs have developed rapidly in the past decade, but their energy
density is still not as good as that of LIBs. Compared to P2-
NaxTMO2, O3-NaxTMO2 has a higher initial sodium content,
which can provide more specic capacity in the same voltage
range, making it more suitable for full-cell applications. For
now, using a composite phase is optimal for a full battery. In
addition to this, the dual-modication strategy can promote the
electrochemical performance of the material more than
a single-modication strategy. For example, the combination of
elemental doping and surface capping can not only improve the
structural stability, but can also further enhance the conduc-
tivity of the material and reduce energy losses during charging
and discharging. It is also an effective strategy for full battery
performance improvement. Another problem to solve is the
problem of high cost of materials. Here, the use of abundant
raw materials and simple preparation make P2 layered cathode
© 2024 The Author(s). Published by the Royal Society of Chemistry
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materials one of the most competitive cathode materials.138

Compared with other cathode materials, P2 cathode materials
also have the advantages of volume and mass energy density
(Fig. 10). From the initial unitary to binary, ternary, and multi
metal oxides, the properties of the materials have been further
optimized by lattice doping and surface modication, which
can also be applied in industry.

Currently, one of the most urgent problems to be solved for
this kind of material is to improve the specic capacity of the
rst charge. The redox reaction of O2− in the structure is an
important consideration that could help solve this problem.139

However, this could incur other problems, such as voltage
hysteresis, and poor cycling and rate performance with anionic
redox reactions.140 With the help of some characterization tools
(e.g., XANES, XRT, AFM141 and Cryo-TEM142), the redox reaction
mechanism of O2− was investigated to provide theoretical
guidance for further improving the energy density, cycling, and
rate performance of such materials.143,144

Although pure-phase P3 type oxides, such as Na2/3Mg1/3Mn2/

3O2 and Na2/3Ni1/3Mn2/3O2, have been reported, the P3 phase is
more commonly reported as an accompanying impurity for P2
and O3 types. P2-type and P-type Na0.67MnO2 have been shown
to exhibit a high reversible capacity and good structural
reversibility. However, the initial Na content of P-type layered
oxides is relatively low, which is not conducive to assembling
the entire battery. Both O3-type and sawtooth-type NaMnO2

have a high initial Na content and specic capacity, but their
electrochemical reversibility is poor. The sawtooth-type
NaMnO2 is generally accompanied by a mixture of O3-type
NaMnO2 phases, and pure sawtooth-type NaMnO2 has not
been reported yet.145,146

Designing high-entropy layered oxides is another strategy to
suppress the P2–O2 phase transition. A transition metal layer
composed of various different metal ions can accommodate the
local volume changes caused by Na+ (de)intercalation. Also, the
phase transition of high-entropy layered cathodes is highly
reversible. Therefore, scientic adjustment of the components
and the structure of high entropy layered materials can also
contribute to the development of new high-performance
cathode materials for sodium-ion batteries. Besides, the low
Na content makes it difficult for P2-NaxTMO2 to be used in high-
energy full-battery systems. So, introducing a certain amount of
sodium supplements (such as NaN3 or Na3P) can increase the
initial sodium content. This could considerably accelerate the
industrialization process of SIBs. Otherwise, their poor air
stability is another barrier for layered oxide cathodes to attain
greater commercialization. To solve this problem, strategies
such as nanostructure design, surface coating, and lattice ion
doping can be adopted to enhance the air stability and improve
the competitiveness of layered cathode materials for large-scale
application. Today, there are many other state-of-the-art solu-
tions available for modication. First, sodium-rich layered
transition metal oxide cathode materials can be tried out. In
these materials, sodium ions occupy the octahedral position of
the transition metal layer. In this way, more sodium ions can
participate in the reaction and provide more capacity. Second,
careful regulation of the ratio of each metal element could be an
© 2024 The Author(s). Published by the Royal Society of Chemistry
effective way to improve the structural stability of layered tran-
sition metal oxides. Finally, complementary anodes, electro-
lytes, diaphragms, additives and binders can be developed.

Among these optimization strategies, high-entropy doping
designs have been extensively adopted in the last two years,
mainly based on a cocktail of effects, entropy-increasing effects,
and poly-electron effects, moreover, we believe that a combina-
tion of high-entropy doping in different lattice sites with
a surface coating strategy may be a practicable solution to
simultaneously address issues related to the structural and
interface instability, thereby fundamentally making such
layered materials have greater practical value for future SIBs.
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