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One-step synthesis of polycyclic thianthrenes
from unfunctionalized aromatics by thia-APEX
reactions†

Kou P. Kawahara,a Hideto Ito *a and Kenichiro Itami *a,b

In this paper, thia-APEX reactions affording π-extended thianthrene derivatives from unfunctionalized aro-

matics are described. By utilizing S-diimidated 1,2-arenedithiols as benzene-1,2-dithiol dication synthons,

new benzodithiine arms were fused to the unfunctionalized aromatic substrates in one step, affording

π-extended thianthrenes in 21–87% yields. The present thia-APEX reaction occurs with equimolar

amounts of aromatic substrates and S-diimidated 1,2-arenedithiols and a catalytic amount of TfOH, which

is advantageous for the efficient creation of novel π-extended thianthrenes. In addition, the unique solid

state packing structures and photophysical properties of the synthesized π-extended thianthrenes were

elucidated in this study.

Introduction

Thianthrene is a six-membered sulfur-containing heterocyclic
compound consisting of a dibenzo-fused 1,4-dithiine ring in
which two sulfur atoms are embedded diagonally (Fig. 1A).1

Neutral thianthrene adopts a bent structure whose C–S–C
angle is ca. 128°, whereas it reversibly transforms into a planar
structure in the radical cation state.1c,2 The redox behavior and
cationic-state capability of thianthrene can be utilized for
supramolecular chemistry2a,3 and development of organic
chemical reactions4 and cathode materials.5 Moreover, the thi-
anthrene structure is favorable for electron-donation and inter-
system crossing due to the electron-richness and heavy atom
effect of sulfur atoms.6 By utilizing these functionalities,
π-extended thianthrenes have been developed in recent
years.3–7 Fig. 1B shows the representative thianthrene-based
materials with unique reactivities and optoelectronic and
supramolecular properties: room-temperature phosphor-
escence (compound A),6d thermally activated delayed fluo-
rescence (TADF) (compound B),6d C–H functionalization of
aromatic compounds (compound C),4 semiconductivity (com-
pound D),7l and host–guest capability for fullerenes (com-
pound E).3

To meet the high demands of π-extended thianthrenes as
functional molecules, easy and rapid synthetic methods are
highly desired. Representative synthetic methods of thian-
threne derivatives are shown in Fig. 2A. For example, sym-
metric thianthrene structures can be constructed utilizing are-
nethiols as starting materials with fuming H2SO4 and reduc-
tants such as zinc and SnCl2 (Fig. 2A-1).8 Besides, using S2Cl2
and Lewis acids such as AlCl3, symmetric thianthrenes can be
directly synthesized from unfunctionalized aromatic sub-
strates, while the applicable substrates are limited to simple

Fig. 1 π-Extended thianthrenes: structures, properties, and
applications.
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benzene derivatives.4b,9 Alternatively, SNAr-type homoannula-
tion reactions using ortho-halogenated arenethiols and a base
are also useful for the preparation of symmetric thian-
threnes.10 Furthermore, cross-annulation reactions using aryl-
dithiols and 1,2-dihaloarenes are frequently employed to con-
struct unsymmetric thianthrene structures and large organic
frameworks consisting of multiple thianthrene bridges
(Fig. 2A-2).2c,5a,7c,e,h–k,11 In this method, the characteristics of
multistep transformations and the low availability of arene
dithiols and dihaloarenes in larger aromatic systems would
diminish the synthetic utility and efficiency of the whole syn-
thetic process. One early example of one-step synthesis of thi-
anthrenes was reported by Sato and coworkers in 1988
(Fig. 2B).12 They used benzopentathiepin (BPT) and AlCl3 for
cross-annulation of unfunctionalized arenes with a dithiine
framework, achieving the one-step synthesis of various thian-
threnes. However, this reaction requires excess amounts of

unfunctionalized aromatics to ensure a high yield. Due to this
limitation, it seems difficult to apply it to the synthesis of
larger aromatics. Therefore, the development of a more
efficient and rapid synthetic method with a broad scope and
applicability of substrates would be needed to advance the syn-
thetic chemistry of thianthrenes.

Previously, we have devoted our efforts toward the develop-
ment of a one-step annulative π-extension (APEX)13,14 reaction
and a heteroatom-embedding APEX (hetero-APEX)15 reaction
for efficient and rapid access to large polycyclic aromatic
hydrocarbons (PAHs), polycyclic heteroaromatics and nano-
graphenes from readily available unfunctionalized aromatics.
Recently, we also developed a sulfur-embedding APEX (thia-
APEX) reaction for the one-step synthesis of π-extended thio-
pyrylium salts (Fig. 2C).15o In this reaction, S-succinimidated
ortho-arenoyl arenethiols work as 1,4-C,S-dication π-extending
agents in the presence of TfOH, and thus a one-step sequence
of annulative C–S/C–C bond formation and dehydrative aroma-
tization of unfunctionalized aromatics occurs with high regio-
selectivity. To further explore the potential of the thia-APEX
strategy, we tested whether 1,2-arenedithiols having two succi-
nimide groups will work as 1,4-S,S-dications, which would
enable the one-step fusion of a benzodithiine ring onto
unfunctionalized aromatics. Herein, we report a new thia-
APEX reaction using S-diimidated 1,2-arenedithiols for the
efficient one-step synthesis of π-extended thianthrenes under
mild reaction conditions. Furthermore, some characteristic
photophysical properties and structural features of the newly
synthesized π-extended thianthrenes were elucidated by X-ray
crystallographic analysis, measurements of absorption and
emission, and density functional theory (DFT) calculations.

Results and discussion

First, we newly prepared S-diimidated 1,2-benzenedithiol from
1,2-benzenedithiol (2a) (see the ESI† for details) and investi-
gated the thia-APEX reaction of 1,2-dimethoxybenzene (1a)
with 2a as a π-extending agent (Table 1). When a mixture con-
taining 1a (0.20 mmol, 1.0 equiv.), 2a (1.1 equiv.), and tri-
fluoromethanesulfonic acid (TfOH, 2.3 equiv.) in 1,1,1,3,3,3,-
hexafluoroisopropyl alcohol (HFIP, 1.0 mL) was stirred at 80 °C
under air for 13 h, the desired thia-APEX reaction proceeded to
afford 2,3-dimethoxythianthrene (3aa) in 38% yield along with
the demethylated by-product 4 in 25% yield (entry 1). The use
of an excess amount of 2a or a mixed solvent of 1,2-dichloro-
ethane (DCE) and HFIP (v/v = 1 : 1) increased the yields of 3aa
with decreased formation of 4 (entries 2 and 3). The use of
DCE alone as the solvent resulted in a higher yield than the
use of HFIP as the solvent (entries 4–7). In this regard, the
HFIP molecule or H2O in HFIP might be involved in the de-
protection of OMe to give 4. To our delight, the use of a
smaller amount of TfOH (ca. 0.6 equiv.) and a stoichiometric
amount of 2a was suitable for increasing the yield of product
3aa (99% NMR yield, entry 7). The use of trifluoroacetic acid
(TFA) instead of TfOH dramatically decreased the yield of

Fig. 2 Conventional synthetic methods for thianthrenes and one-step
synthesis using sulfur-embedding annulative π-extension (thia-APEX).
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product 3aa, implying the need for a strong acid for activating
the S–N bonds (entry 8). Elevating the temperature to 100 °C
resulted in an increased yield of 4 along with the decompo-
sition of 3a (entry 9). Finally, we found that the use of an equi-
molar amount of 1a and 2a in the presence of 0.6 equiv. of
TfOH in DCE at room temperature (23 °C) are the best reaction
conditions for the present thia-APEX reaction, and thus suc-
ceeded in exclusively obtaining 3aa in 83% isolated yield (entry
10). Compared to the early report on one-step thianthrene syn-
thesis by Sato,12 the present thia-APEX reaction realized a 1 : 1
cross-annulation between the unfunctionalized arene and the
π-extending agent with catalytic amounts of an acid even at
room temperature.

With the optimized conditions in hand, the scope of thia-
APEX reactions using other aromatic substrates was examined
(Fig. 3). When using S-diimidated 3,4,5,6-tetrafluorobenzene-
1,2-dithiol 2b with 1a, the thia-APEX reaction was less
efficient, but afforded dimethoxytetrafluorothianthrene 3ab in
32% yield. In the reaction with 2a, 1,2,3,4-tetramethylbenzene
(1b) was transformed to the corresponding thianthrene 3ba in
70% yield. Unfortunately, the thia-APEX reactions of electron-
deficient aromatic substrates such as 1,2-difluorobenzene and
ortho-phthalodinitrile did not proceed, probably due to their
lower nucleophilicities. Thianthrene 3ca was also obtained in
21% yield from phenanthrene (1c) and 2a. Although this reac-
tion preferentially occurred at the K-region (C9, C10-position
of phenanthrene: concave armchair edges in PAH), as same as
the previous report,15a,o minor thia-APEX reactions at other
regions and/or multi-thia-APEX reactions could result in lower
yields of 3ca. In contrast, the thia-APEX reaction using 2,7-di-

tert-butylphenanthrene (1d) with 2a efficiently proceeded to
afford dibenzothianthrene 3da in 87% yield. Besides, by
employing the methylated π-extending agent 2c instead of
compound 2a, di-tert-butylphenanthrene 1d was transformed
to the corresponding dibenzothianthrene 3dc in 71% yield.
Thanks to the bulky tert-butyl groups, the π-extensions on
other regions such as the C1–C2, C2–C3 and C3–C4 positions
are considered to be prevented. Moreover, the thia-APEX reac-
tion of C5v-symmetric corannulene (1e) with 2a mainly
afforded benzodithiine-fused corannulene 3ea in 35% yield,
although multi-thia-APEX products were also observed in the
reaction mixture to some extent. Besides, benzodithiine-fused
triphenylene 3fa was obtained from pristine triphenylene (1f )
in 39% yield. The structure of 3fa was elucidated by X-ray crys-
tallographic analysis (see the ESI†). In this reaction, there is a
possibility of the formation of other regioisomers and multi-
thia-APEX products, which can decrease the yield of 3fa.
Furthermore, benzo[b]thiophene (1g) and 1-tosyl-1H-indole
(1h) were used as heteroaromatic templates for thia-APEX reac-
tions, and dibenzodithiinothiophene 3ga and dibenzodithiino-
pyrrole 3ha were obtained in 53% and 86% yields, respectively.
Thia-APEX reactions also proceeded on unfunctionalized

Table 1 Optimization of the reaction conditions for the thia-APEX
reaction of 1a with 2a

Entry
2a
(equiv)

TfOH
(equiv) Solv. Temp.

Yield of
3aaa

Yield of
4a

1 1.1 2.3 HFIP 80 °C 38% (38%) 16% (25%c)
2 2.0 2.5 HFIP 80 °C 57% 0%
3 1.0 2.4 DCE/HFIPb 80 °C 65% 17%
4 1.0 2.3 DCE 80 °C 71% 19%
5 1.0 1.1 DCE 80 °C 50% 26%
6 2.0 2.3 DCE 80 °C 65% 0%
7 1.0 0.64 DCE 80 °C 99% (78%) 0%
8c 1.1 0.62 (TFA) DCE 80 °C 3% 0%
9 1.0 2.2 DCE 100 °C 34% 25%
10 1.0 0.62 DCE 23 °C >99% (83%) 0%

TfOH: trifluoromethanesulfonic acid; HFIP: 1,1,1,3,3,3-hexafluoroisopropyl
alcohol; DCE: 1,2-dichloroethane; TFA: trifluoroacetic acid. a 1H NMR
yields determined using CH2Br2 as the internal standard, and isolated
yields in parentheses. b A mixed solvent of HFIP/DCE (v/v = 1 : 1) was
used. c TFA was used instead of TfOH.

Fig. 3 Scope of substrates in the thia-APEX reaction.
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heteroaromatic rings. For example, the thia-APEX reaction of
N-methyldibenzoindole 1i, which was previously synthesized
by us using the APEX reaction of N-methylpyrrole,14g with 2a
took place to afford 3ia in 42% yield. Finally, guaiazulene (1j)
was subjected to the thia-APEX conditions, and compound 3ja
was obtained in 25% yield (an average yield of four runs, see
the ESI† for details) as a relatively unstable dark-green oil. In
this reaction, the thia-APEX reaction selectively proceeded on
the five-membered ring moiety.

Because new π-extended thianthrenes such as 3ca, 3ea and
3ja were easily accessed by the thia-APEX reaction for the first
time, the photophysical properties as well as the electronic
structures of 3ca, 3ea and 3ja were also investigated. First,
dibenzothianthrene 3ca showed an absorption band in the UV
region, and the longest wavelength absorption maximum
appeared at 331 nm in CH2Cl2 (Fig. 4, green line). Thianthrene
3ca emits strong blue-green fluorescence (fluorescence
quantum yield (ΦF) = 24%) upon excitation with 330 nm light,
and the emission maximum was observed at 497 nm in
CH2Cl2 (Fig. 4, green dashed line). In the case of corannulene-
fused thianthrene 3ea, an intense absorption maximum and a
weak shoulder peak were observed at 304 nm and at
350–450 nm, respectively (Fig. 4, orange line). Moreover, thian-
threne 3ea showed a broad fluorescence spectrum having a
peak top at 560 nm (Fig. 4, orange dashed line) and an orange
emission in CH2Cl2. Both thianthrene 3ca and 3ea showed
Stokes shifts of ca. 160 nm, whose relatively large values were
considered to be derived from large dynamic structural relax-
ations at their excited states.1,7j Furthermore, the fluorescence
quantum yields of thianthrenes 3ca and 3ea were measured as
24% and 4%, respectively. Notably, the 24% quantum yield of
3ca was even larger than those of pristine phenanthrene and
triphenylene (ca. 10%),16 which can be rationalized by the
heavy atom effect of sulfur atoms and the prevention of

quenching of fluorescence by its bent structure.17 Finally, we
found that guaiazulene-fused benzodithiine 3ja shows a green
color in CH2Cl2 and a weak and broad absorption band
between 450–800 nm (Fig. S5†). This compound did not show
fluorescence, which is strongly reflective of the nature of the
guaiazulene core.

Next, the absorption properties and electronic structures of
π-extended thianthrenes 3ca and 3ea were evaluated by DFT
and time-dependent DFT (TD-DFT) calculations using the
Gaussian 16 program18 at the B3LYP/6-31+G(d,p) level of
theory19 and by consideration of the solvent effect using the
integral equation formalism-polarizable continuum model
(IEF-PCM)20 in CH2Cl2. As shown in Fig. 5, the energy levels of
the HOMO and LUMO of 3ca were calculated to be −5.90 eV
and −1.74 eV, respectively. While the HOMO of 3ca is mainly
localized on the 1,4-dithiine moiety, the LUMO of 3ca is loca-
lized to some extent on the phenanthrene moiety. A similar
HOMO and LUMO localization tendency was also found in
3ea, and the energy levels of the HOMO and LUMO of 3ea
were calculated to be −5.96 eV and −2.20 eV, respectively.
Compared with the HOMO and LUMO energy levels of pristine
phenanthrene (HOMO: −6.12 eV; LUMO: −1.43 eV) and coran-
nulene (HOMO: −6.35 eV; LUMO: −2.01 eV), the effect of

Fig. 4 Absorption and emission spectra of π-extended thianthrenes 3ca
and 3ea in CH2Cl2. Excitation wavelengths for fluorescence (FL)
measurements: 330 nm (3ca) and 405 nm (3ea). The pictures of emis-
sion color were taken using the concentrated solutions of each com-
pound under 365 nm of UV light irradiation.

Fig. 5 Representative frontier orbitals of 3ca (A) and 3ea (B) (isovalue =
0.02). Geometry optimization and energy calculations were conducted
at the B3LYP/6-31+G(d,p) level of theory.
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benzodithiine-fusion is slightly more predominant in increasing
the energy levels of the HOMO (Δ = +0.22 and +0.39 eV) rather
than in decreasing those of the LUMO (Δ = −0.31 and −0.19
eV). As a result, the HOMO–LUMO energy gaps of 3ca and 3ea
are reduced by 0.53–0.58 eV compared with phenanthrene and
corannulene. As shown in Table 2, the calculated excitation
wavelength (λTD-DFT) of the HOMO → LUMO transition of thi-
anthrene 3ca was 347.21 nm ( f = 0.0993), which is consistent
with the experimental longest wavelength absorption of 3ca as
a weak peak (λabs = 331 nm). Besides, the second and third
excitation attributed to HOMO → LUMO+1 and HOMO−1 →
LUMO transitions was calculated to be 334.84 nm ( f = 0.0023)
and 299.47 nm ( f = 0.2015), respectively. The latter allowed
excitation is considered to be the shoulder absorption peak
around 290 nm. With regard to 3ea, the electron transitions in
three lowest energies were also estimated to be 395.93 nm ( f =
0.0162, HOMO → LUMO), 388.71 nm ( f = 0.0229, HOMO →
LUMO+1) and 356.73 nm ( f = 0.0000, HOMO−1 → LUMO+1),
whose small or zero values of f show a good agreement with
the weak shoulder absorptions between 350 to 450 nm. Moreover,
the HOMO−1 → LUMO+1 transition (λTD-DFT = 356.73 nm, f =
0.0000) of 3ea was determined as a forbidden transition.

Next, we performed the structural analyses of 3ca and 3ea
by X-ray crystallographic analysis. Single crystals of 3ca and
3ea were obtained by recrystallization from chloroform/
pentane by a vapor diffusion method. In the X-ray crystallo-
graphic analysis of 3ca, two pairs of two molecules were
observed in a unit cell, and both pairs consist of two molecules
arranged in a pseudo-C2-symmetry, whose dithiine cores are
directed in the same axis with ca. 127° bent angles (Fig. 6A).
Each pair is directed in the opposite direction and positioned
in a Ci symmetry, forming the two pseudo-enantiomeric pairs
of two racemic molecules (Fig. 6A–C). Furthermore, each mole-
cule is aligned in the direction of the b axis, forming columnar
stacks, maintaining ca. 3.6 Å of intermolecular distance, which
indicates weak π–π interactions of 3ca molecules.21 This
characteristic columnar packing is identical to that of unsub-
stituted thianthrene.22 In the X-ray crystallographic analysis of
3ea, the bent angle of the thianthrene moiety in 3ea was found
to be 126°, which is also closely identical to those of 3ca and
unsubstituted thianthrene (Fig. 6D).1,22 Besides, the dangling
benzodithiine arm is bent toward the concave face of the cor-
annulene core, which forms a ladle-like shape. The one-dimen-

sional columnar packings of 3ea are aligned in an antiparallel
manner to the neighboring molecular columns, counteracting
the dipole moments of each column (Fig. 6E). Focusing on the
distances between two neighboring molecules, each corannu-
lene core is longitudinally aligned at 3.3 Å intervals, which are
smaller than the sum of the van der Waals radii of two carbon
atoms, indicative of the existence of the π–π interaction.21

Furthermore, the distances between the peripheral C–H bond
in the corannulene core and the carbon atoms in the dangling
benzene ring are less, and ranged from 2.7 to 2.9 Å. These
values are within the sum of the van der Waals radii of one
hydrogen and one carbon atom, showing the existence of CH/π
interactions (Fig. 6F).23 Depicting isosurfaces of non-covalent
interaction (NCI) plot analysis using the NCIPLOT 4.0
program,24 green isosurfaces, which indicate weak non-
covalent interactions, are visually and clearly confirmed
between the corannulene cores (π–π) and between the corannu-
lene core and the benzene ring (CH/π) (Fig. 7). Because unsub-
stituted corannulene in the solid state shows a disordered
arrangement derived from CH/π interactions, the thianthrene
arms are considered to contribute to the formation of the

Fig. 6 Structures of π-extended thianthrene 3ca: (A) structure and
ORTEP drawing of 3ac with 50% probability, (B) side view of a unit cell,
(C) top view of a unit cell, (D) structure and ORTEP drawing of 3ea with
50% probability, (E) ORTEP drawing of the columnar packing structure
of 3ea, and (F) an extracted dimer structure with distances of π–π and
CH/π interaction in units of Å.

Table 2 Results of TD-DFT calculations at the B3LYP/6-31+G(d,p) level
of theory in CH2Cl2 (IEF-PCM). λTD-DFT: estimated excitation wavelength;
f: oscillator strength; λabs: the experimental observed longest wave-
length absorption in CH2Cl2

λTD-DFT f
Electronic transition
(coefficient) λabs

3ca 347.21 nm 0.0993 HOMO → LUMO (0.67256) 331 nm
334.84 nm 0.0023 HOMO → LUMO+1 (0.61319) —
299.47 nm 0.2015 HOMO−1 → LUMO (0.56362) —

3ea 395.93 nm 0.0162 HOMO → LUMO (0.68456) 350–450 nm
388.71 nm 0.0229 HOMO → LUMO+1 (0.65994) —
356.73 nm 0.0000 HOMO−1 → LUMO+1 (0.61773) —

Research Article Organic Chemistry Frontiers
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columnar packing structure. In addition, the columnar
packing structure of thianthrene 3ea is the first example of
mono-benzodithiine-fused corannulene,3,7e whereas there are
a lot of other rim-region-fused or rim-region-substituted coran-
nulene derivatives showing a similar columnar stacking
ability.25 We expect that the columnar stacking achieved by the
simple structural motif of benzodithiinocorannulene can
provide a fruitful insight into the application of corannulene-
based functional materials in organic electronics26 and supra-
molecular chemistry27 as well as host–guest chemistry.3

To obtain insights into the bent structures of thianthrenes
3ca and 3ea in crystalline and solution states, their inversion
barriers were examined using DFT calculations. The structures
of thianthrenes 3ca and 3ea in the ground and transition
states were optimized at the B3LYP/6-31+G(d,p) level of theory.
3ca has only one stable bent structure (see the ESI†), whereas
3ea has two stable structures, a ladle-shaped one (3ea-ladle)
and a spoon-shaped one (3ea-spoon), because of the inversion
of the corannulene core and the benzodithiine arm (Fig. 8).
3ea-ladle was the most stable conformer in 3ea, whose struc-
ture was also observed by X-ray crystallographic analysis
(Fig. 6). The inversion barriers corresponding to the inversion
of benzodithiine arms were calculated to be 7.31 kcal mol−1

for TS13ca and 7.47 kcal mol−1 for TS13ea. The values of TS13ca
and TS13ea are larger than that of pristine thianthrene (5.1 kcal
mol−1, at the B3LYP/6-31+G(d,p) level),28 indicating that the
PAH structures of phenanthrene and corannulene make the
inversion barriers of benzodithiine arms higher. Furthermore,
the transition state of corannulene core flipping in 3ea (TS23ea)
was optimized and its barrier was calculated to be 9.72 kcal
mol−1. This value is also closely identical to that of pristine
corannulene.29 In conclusion, newly synthesized 3ca and 3ea

were found to be hybrid molecules of thianthrene and PAHs.
Their bent structures and conformational changes reflect the
nature of both thianthrene and PAH cores well.

Conclusions

By using S-diimidated 1,2-benzenedithiol derivatives as new
π-extending agents, thianthrenes and π-extended thianthrenes
were efficiently obtained by the thia-APEX reaction of unfunc-
tionalized aromatic substrates in one step. In addition, the
characteristic photophysical and electronic properties and
structural features of thia-APEX products were elucidated by
UV-vis absorption and emission spectroscopy, DFT calcu-
lations and X-ray crystallographic analysis. In particular, the
π-extended thianthrenes having phenanthrene and corannu-
lene cores (3ca and 3ea) showed emission properties with
larger Stokes shifts. 3ca showed higher fluorescence quantum
yields than pristine phenanthrene and triphenylene.
Regarding corannulene-fused thianthrene 3ea, 1D-columnar
packing in the solid state was observed, which is in stark con-
trast to pristine corannulene. The newly developed thia-APEX
reaction is expected to contribute to the rapid and efficient cre-
ation of unique π-extended thianthrenes having various aro-
matic cores.
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