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In this study, we, for the first time, report a high Cu solubility of 11.8% in single crystal SnSe microbelts
synthesized via a facile solvothermal route. The pellets sintered from these heavily Cu-doped microbelts
show a high power factor of 5.57 pW cm™ K=2 and low thermal conductivity of 0.32 W m~! K~ at 823
K, contributing to a high peak ZT of ~1.41. Through a combination of detailed structural and chemical
characterizations, we found that with increasing the Cu doping level, the morphology of the synthesized
Sny_Cu,Se (x is from 0 to 0.118) transfers from rectangular microplate to microbelt. The high electrical

transport performance comes from the obtained Cu* doped state, and the intensive crystal
Received 3lst May 2018 imperfect h as dislocations, lattice distorti d strains, play key roles in keeping low thermal
Accepted 28th July 2018 imperfections such as dislocations, lattice distortions, and strains, play key roles in keeping low therma
conductivity. This study fills in the gaps of the existing knowledge concerning the doping mechanisms of

DOI: 10.1039/c85c02597b Cu in SnSe systems, and provides a new strategy to achieve high thermoelectric performance in SnSe-

rsc.li/chemical-science based thermoelectric materials.

Introduction

With the capability of directly converting between heat and
electricity, thermoelectric materials provide a promising alter-
native energy supplement in applications by collecting the
waste-heat and assisting in finding new energy solutions.* To
evaluate the converting efficiency, the unitless figure of merit ZT
is defined as ZT = $*¢T/x and k = k. + k;, where o, S, k, ki, Ke, and
T are the electrical conductivity, the Seebeck coefficient, the
thermal conductivity, the lattice thermal conductivity, the
electrical thermal conductivity, and the absolute temperature,®*
respectively. A high ZT needs a low « and a high power factor
(5%0). Since S, ¢ and «. are strongly coupled through the carrier
concentration (n), achieving high ZT values has been histori-
cally difficult. It is therefore essential to explore favourable
electrical transport properties to strengthen the energy conver-
sion efficiency, and to realize a low thermal transport speed to
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relieve the heat loss at the same time. To achieve this goal, with
a narrow band-gap of ~0.9 eV,>®’ tin selenide (SnSe) has
received great attention for applications in low-cost thermo-
electrics.>*™ A remarkably high peak ZT of ~2.6 has been re-
ported along the b-axis of p-type SnSe crystals,® where the
performance benefits from the crystals’ reasonable ¢ and low «
values at 923 K."” However, as they suffer from potentially high
production costs and poor mechanical properties, SnSe crystals
are difficult to use in thermoelectric devices, and their critical
crystal-growth techniques have considerable limitations for
industrial scale-up.”® Meanwhile, there is strong controversy
over the high ZT of SnSe crystals due to the fact that the « values
determined in these crystals are not their intrinsic values,***
and the reinvestigation of single crystals has demonstrated
much higher « values.” To overcome these challenges, poly-
crystalline SnSe has been considered as an alternative
approach.' However, due to the low ¢ values derived from low n
(<10"® em™?), the ZT values (<0.3) have been found to be
undesirable for un-doped polycrystalline SnSe.® As indicated
from previous calculations,'”*® the optimised n value of p-type
SnSe is ~3 x 10" cm ™ to reach an enhanced ZT value, so
that there is a great potential to enhance these values through
effective engineering.

Doping and/or alloying have been widely used for tuning n to
achieve desired o values.'®?® Various elements, such as alkali
metals (Na and K),**® I-B group metals (Cu and Ag),**>¢ and
halogens (Cl, Br and I),*”*** have been used as dopants in either

This journal is © The Royal Society of Chemistry 2018


http://crossmark.crossref.org/dialog/?doi=10.1039/c8sc02397b&domain=pdf&date_stamp=2018-09-25
http://orcid.org/0000-0003-0905-2547
http://orcid.org/0000-0002-6469-9194
http://orcid.org/0000-0002-1334-4764
http://orcid.org/0000-0002-9309-7993
http://orcid.org/0000-0001-9435-8043
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c8sc02397b
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC009037

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 30 jul 2018. Downloaded on 30.10.2025. 04.24.55.

(cc)

Edge Article

p-type or n-type SnSe.'® As a typical I-B group metal and its
abundant availability in earth, Cu, each atom having one
valence electron (similar to alkali metals), becomes a good
candidate to for tuning 7,” and in turn for improving ¢.*
However, the fundamental mechanisms, such as the Cu doping
limit and its valence state in SnSe, are still unclear. Recent
studies have shown that to achieve homogeneous Cu doping in
SnSe is a challenge,? and the secondary phase (such as Cu,Se)
generated during the synthesis is difficult to remove from the
system via the post-melting route.” Furthermore, there is no
direct structural evidence to demonstrate the doping behav-
iours of Cu in SnSe crystals. Therefore, urgent attention is
needed to clarify these fundamentals via critical structural and
chemical characterizations, which will illustrate the doping
behaviours, and effectively improve ¢ to benefit the energy
conversion efficiency.

To explore these fundamental mechanisms and achieve
a high thermoelectric performance at both low and high
temperatures, in this study we fabricated Cu-doped SnSe
microbelts via a simple solvothermal method as illustrated in
Fig. 1(a), from which a high doping limit of Cu (11.8%) in SnSe
microbelts was achieved for the first time. The secondary phase
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(Cu,Se) in the synthesized products can be found when exces-
sive Cu is doped in SnSe, but this was effectively removed
through sonic separation and centrifuging after the sol-
vothermal synthesis. Through detailed structural characteriza-
tion as illustrated in Fig. 1(b), it was found that with increasing
the Cu doping level, the morphology of Sn;_,Cu,Se (x is from
0 to 0.118) can be tuned from rectangular plates to microbelts.
Both Cu' and Cu®" valence states were confirmed in the
synthesized Sn;_,Cu,Se via XPS analysis. The observed lattice
distortion plays a dominant role in keeping the heavily doped
SnSe microbelts in the orthorhombic structure. After being
sintered into pellets as illustrated in Fig. 1(c), the comprehen-
sive thermoelectric properties, such as carrier mobility (u), 1, o,
S, S’a, and k, were measured and calculated, which led to a high
ZT of ~1.41 at 823 K when x = 0.118, as shown in Fig. 1(d),
indicating that our heavily Cu-doped SnSe has full potential for
applications in high temperature thermoelectric devices.

Results and discussion

To understand the extraordinary thermoelectric performance
found in our heavily Cu-doped SnSe, we first investigated the

Heavily Cu-doped SnSe microbelts
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Illustrations of heavily Cu-doped SnSe (Sn;_,Cu,Se): (a) fabrication process; (b) characterization techniques used; (c) sintering process and
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solubility of Cu in SnSe via X-ray diffraction (XRD) analysis and
electron probe micro-analysis (EPMA), and then studied the
valence state of Cu in SnSe via X-ray photoelectron spectroscopy
(XPS). Detailed characterizations by scanning electron micros-
copy (SEM), high resolution transmission electron microscopy
(HR-TEM), spherical aberration corrected scanning trans-
mission electron microscopy (Cs-STEM) with high-angle
annular dark-field (HAADF) imaging and energy dispersive
spectroscopy (EDS) are presented and discussed to explain the
fundamental reasons for the obtained high thermoelectric
performance.
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In this study, we use Na,SeOj; as the Se source, SnCl,-2H,0
as the Sn source, and CuCl, as the Cu doping source. To study
the solubility of Cu in SnSe, we define the molar percentage r of
CuCl, in the total amount of CuCl, and SnCl,-2H,0. The
selected r values in this study were 0% (no CuCl, added), 1%,
2%, 5%, 7.5%, 10%, 20%, and 30%, respectively. Through
detailed EPMA studies, the Cu doping level (defined as x for
Sn,;_,Cu,Se) from different r values was found as 0%, 1%, 2%,
5%, 7.5%, 10%, 11.8%, and 11.8%, respectively, indicating that
the solubility of Cu in the SnSe system is 11.8%. In the cases of
r = 20% and 30%, an obvious secondary phase of Cu,Se can be
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(a) XRD patterns of synthesized products with different r and x values. (b) Magnified XRD patterns to see the peak deviation at 400*. SEM

images of synthesized products for (c) x = 0, (d) x = 0.05, and (e) x = 0.118, to see the morphology variation. (f) Magnified SEM image of
synthesized products for x = 0. (g) Magnified SEM image of the circled area in (f) to show the (100) surface. (h) Magnified SEM image of
synthesized products for x = 0.118. (i) Magnified SEM image of the circled area in (h) to show the (100) surface.
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identified when the doping concentration is beyond the solu-
bility (11.8%) of Cu in the SnSe system. However, the secondary
phase can be effectively removed through ultrasonic separation
and centrifuging techniques after the solvothermal synthesis;
a detailed discussion is shown in the ESI, Fig. S1(a-c). There-
fore, the obtained final synthesized products with r = 20% and
30% are almost single-phase Sng gg,Cug.11gS€ microbelts.
Investigating the structural characteristics of our synthe-
sized products, Fig. 2(a) shows their XRD patterns. All diffrac-
tion peaks for all products can be exclusively indexed as the
orthorhombic-structured SnSe, and a Pnma space group (Stan-
dard Identification Card, JCPDS 48-1224). As can be seen in
Fig. 2(a), the strongest peak is the 400* peak for all products,
suggesting that all products should possess significant {100}
surfaces. Because the 400* peak is much more significant than
the other peaks, it is hard to see most of the peaks in detail. To

View Article Online
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solve this problem, we magnified one of our XRD patterns (r =
20%) as shown in Fig. S1(c),T from which all peaks can be
exclusively indexed as the orthorhombic-structured SnSe, and
no secondary phase can be found. Fig. 2(b) shows detailed 400*
diffraction peaks for different r values, indicating that for r >
0%, all 400* peaks deviate from the standard value at 26 =
31.081°. Even for r = 0%, the slightly right-shifted 400* peak
indicates the Sn vacancies exist in the SnSe structure.'® Our
extensive EPMA studies found that the true atomic ratio of
Sn : Se is ~0.996 : 1. With an increase of the Cu doping level,
the 400* peaks shift towards a higher 26, indicating that Cu
atoms are incorporated into the SnSe lattice. Because the size of
Cu ions is smaller than Sn ions, the Cu-doping leads to
a decrease of the lattice parameter a.*> However, for r > ~10%,
no further observable shift of the 400* peak suggests that the
doping limit of Cu in SnSe is reached, agreeing with the EMPA

Fig. 3
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(a) TEM image of a typical SnSe microplate for x = 0, corresponding (b) HRTEM image and (c) SAED pattern taken from the plate shown in

(a). (d) TEM image of a section of a typical SnSe microbelt for x = 0.118, inset showing the corresponding SAED pattern, (e) corresponding HRTEM
image with a dislocation shown in the inset. (f) TEM image showing significant strain contrast. (g) EDS map and spot analysis taken from a typical

SnSe microbelt for x = 0.118.
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results, which is a surprising value. To doubly confirm this, we
also synthesized products with r = 11.8%, as shown in the
yellow-highlighted regions in both Fig. 2(a) and (b). It is clear to
see that the peak shift from r = 11.8% is same as that from r =
20% and r = 30%, indicating that the solubility of Cu in the
SnSe structure is 11.8%. A detailed discussion about the varia-
tions of the calculated lattice parameters (a, b, and ¢) and unit
cell volume can be seen in Fig. S2 in the ESL.}

Cu doping has been reported to contribute to a morphology
and/or facet change for many materials during their single
crystal growth via various solution methods.**™** For the case of
single-crystal SnSe synthesized via our solvothermal route,

View Article Online
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morphological evolution in Cu-doped SnSe was also observed.
Fig. 2(c-e) show typical SEM images of the synthesized products
for x = 0, 0.05, and 0.118 (r = 20%), respectively. For x = 0, as
shown in Fig. 2(c), the synthesized products have a typical
rectangular plate-like morphology, and their lateral dimensions
vary between 30 and 200 pm, similar to the reported
morphology.’** Interestingly, with increasing x, the
morphology of SnSe gradually transfers from rectangular plate-
like into long belt-like morphology. More evidences of the
morphology transition are shown in Fig. S3(a-f) in the ESL{ To
determine the preferred facets for different x values, detailed
SEM investigations were performed. Fig. 2(f) shows a SEM
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(a) STEM HAADF image of microbelt (x = 0.118) viewed along the a-direction with strain fields. Area-1 was taken from a normal area and

Area-2 was taken from an area across the strain field. HR-STEM HAADF images of (b) Area-1 and (c) Area-2. The overlays in (b) show cell
parameters, axes, and Sn/Cu atoms in purple and Se atoms in green. The yellow dashed circles in (c) show the areas with a disordered
arrangement of atoms. (d) Intensity line profile-1 with illustrated crystal structure viewed along the b-axis, (e) intensity line profile-2 taken from (b)
with illustrated crystal structure viewed along the c-axis, and (f) intensity line profile-3 taken from (c).
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image of the synthesized SnSe plates with x = 0, from which the
circled area is magnified as shown in Fig. 2(g), in which the
(100) surface is labelled. It is of interest to note that, compared
with other surfaces, the SnSe microplates possess significant
{100} surfaces, which explain why 400* is the strongest peak. To
illustrate the potential surfaces of our SnSe microplates, we
simulated the single crystal microplate of SnSe using software
(WinXMorph),*” and the corresponding crystal model is shown
in Fig. S4(a) of the ESL{ On the other hand, Fig. 2(h) shows the
SEM image taken from a typical Snggs,Cug 11sSe microbelt,
from which the circled area is also magnified as shown in
Fig. 2(i) with the labelled (100) surface. {100} are still the most
significant surfaces on the microbelts. Besides, Fig. 2(i) shows
many surface steps parallel to the axial direction of the belt,
which is likely to be caused by the irregular stacking of Sn-Se
thinner belts. To illustrate the facets of our heavily Cu-doped
SnSe, we also simulates the single-crystal microbelts using
software (WinXMorph),*” and the corresponding crystal model
is shown in Fig. S4(b) of the ESL.{

Fig. 3(a) shows a TEM image taken from a typical SnSe
microplate, in which the electron beam is parallel to the normal
direction of the plate. Fig. 3(b) and (c) are the HRTEM image
and selected area electron diffraction (SAED) pattern taken from
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the thin corner area of the plate, and show that the plate has the
orthorhombic structure and has a {100} surface. Fig. 3(d) is
a TEM image taken from a section of a typical Sng gg,Cug 1185€
microbelt with a width of ~300 nm. The inset is the SAED
pattern taken along the d zone-axis, showing that the axial
direction of the belt is parallel to the direction. Fig. 3(e) is the
corresponding HRTEM image, showing the typical ortho-
rhombic structure. Dislocations are often found through our
HRTEM investigations, and an example is shown in the inset in
Fig. 3(e). Fig. 3(f) is an HRTEM image taken from a relatively
larger area in a belt, and shows a significant strain contrast.
Such a strain contrast could be caused by the local non-
uniformity of Cu doping and a possible mixture of Cu" and
Cu”'. To confirm this, energy dispersive spectroscopy (EDS)
mapping was performed. We used a Mo grid rather than a Cu
grid to avoid Cu impact from the grid. Fig. 3(g) shows respective
the EDS maps for Se, Sn, and Cu, and overlapped images from
a typical microbelt. All of the elements are well distributed,
indicating the successful doping of Cu in the SnSe system. The
local non-uniformity of Cu can also be seen. Besides, extensive
EDS measurements are used to analyse the Cu concentration,
and an example is shown in Fig. 3(g), which agrees with our
EPMA analysis.
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(a) Survey scan of XPS spectra for synthesized products with x = 0.118. High-resolution scans of XPS spectra for (b) Sn 3d, (c) Se 3d, and (d)
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To understand the detailed structural characteristics of the
Sn(Cu)/Se slabs stack, Cs-corrected STEM-HAADF investigations
were performed. Fig. 4(a) is a STEM-HAADF image taken from
a typical Snggg,Cug11sSe microbelt viewed along the a-axis,
which also shows non-uniform contrast and varied structural
patterns, suggesting the local elemental variation. This explains
the strain contrast observed in Fig. 3(f). In fact, such local
compositional variation and dislocations cause lattice distor-
tions, which in turn enhance the phonon scatterings. Fig. 4(b)
and (c) show HR-STEM HAADF images of Area-1 and Area-2
indicated in Fig. 4(a), respectively. For Area-1, the overlays in
Fig. 4(b) show lattice parameters, axes, and Sn/Cu atoms in
purple and Se atoms in green (shown in the dashed rectangle).
The dotted white rectangle in the centre of the overlay indicates
the projected unit cell, and the theoretical values of ¢ and b are
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4.439 A and 4.186 A, respectively.*** The clear atomic structure
of SnSe with no atom disarrangement was observed. Fig. 4(d)
and (e) are the intensity line profile-1 (dashed orange line) taken
along the c-axis and profile-2 (dashed blue line) taken along the
b-axis in Fig. 4(b), respectively. As can be seen, the measured cell
parameter for ¢ was ~0.44 nm, which is close to the calculated
value (4.44 A). Similarly, the measured cell parameter of b in
Fig. 4(e) is ~0.41 nm, which also is close to the calculated value
(4.13 A). All of these evidences demonstrate the nature of the
orthorhombic structure of SnSe. Considering the slight differ-
ence between peak intensities shown in Fig. 4(d) and (e), it is
predicted that Cu®* substitutes the position of Sn>*, resulting in
weakened peaks. For Area-2, the yellow dashed circles in
Fig. 4(c) show the areas with a disordered arrangement of
atoms. Fig. 4(f) is an intensity line profile-3 taken from Fig. 4(c)
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(dashed red line) along the c-axis, from which the measured
disordered arrangement of atoms possesses a symmetry line,
indicating the potential existence of Cu' illustrated by the
inserted crystal structure in Fig. 4(f).

To confirm the co-existence of Cu* and Cu** in our Cu-doped
SnSe, XPS analysis was performed. Fig. 5(a) shows the survey
scan for synthesized Sng gg,Cuy 115Se microbelts, indicating the
presence of Sn 3d, Se 3d, and Cu 2p energy states, without any
energy states of other elements except for O and C. To analyse
the detailed information of Sn, Se, and Cu, Fig. 5(b-d) respec-
tively show high-resolution scans of XPS spectra for Sn 3d, Se
3d, and Cu 2p, from which both Sn and Se atoms present single
valence states. For Sn, the peaks corresponding to Sn 3d;/, and
Sn 3ds,, are singlets, and no accessorial binding energy peaks
can be found, indicating the divalent characteristic of the Sn
ions. For Se, a binding energy peak at 53.7 eV corresponds to Se
3d.* For Cu, as shown in Fig. 5(d), strong peaks corresponding
to Cu 2p;/, were observed at ~933 eV, indicating the successful
doping in SnSe. Interestingly, there were two valence states for
the Cu ions (Cu™ for the peak at 932 eV and Cu®" for the peak at
935 eV) in SnSe, which is a new finding in the doping behaviour
of Cu. The quantified at% of Cu agreed with the proposed 11.8%
of Cu.

To understand the thermoelectric properties of our Cu-
doped SnSe microbelts, we sintered as-synthesized products
(with x = 0, 0.01, 0.02, 0.05, 0.075, 0.1 and 0.118, respectively)
into pellets, and cut the pellets into rectangular chips to
measure and calculate the key properties (s, S, S%¢ and «)
between 300 and 873 K. Considering that all properties except S
measured along the L directions (perpendicular to the sinter-
ing pressure) are higher than those measured along the ||
directions (parallel to the sintering pressure) due to the
anisotropy (shown in Fig. S5 in the ESIT),*'*** we chose the L
direction as the main measured direction in the following
discussions. Fig. 6(a) shows the measured temperature-
dependent ¢ parameters for pellets with different x values.
After doping with Cu, the ¢ values were greatly enhanced at low
temperature (from 300 to 450 K) and high temperature (above
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773 K) when x = 0.118. As can be seen, two regions for ¢ exist.
From 323 to 573 K (the first region), a typical metallic transport
behaviour can be observed. After being heavily doped with Cu,
the metal cations (especially Cu’) increased. In this situation,
with increasing the temperature, the vibration of the metal
cations becomes more intensive than their un-doped counter-
parts, which severely impede the carrier transport, resulting in
a drastic drop in ¢.®* From 573 to 873 K (the second region),
typical thermally activated semiconducting behaviour derived
from the thermal excitation of the carriers is seen, which is
similar to the case of single crystals.? Besides, the strong bipolar
effect,* arising between 500 and 600 K, can produce additional
holes, leading to a rapid n increase, and in turn increasing o."®
These results indicate that the doped Cu (mainly Cu') can
significantly improve the ¢ of pure SnSe at high temperature by
strengthening the thermal excitation of the carriers, even
though it results in a slight reduction of ¢ at medium temper-
ature, which is why the pure SnSe sample outperforms most of
the Cu-doped samples in this temperature range.

As discussed above, the greatly enhanced ¢ after being
heavily doped with Cu should come from the n enhancement in
the Cu-doped SnSe, as suggested in our measured n and u
values (see Fig. 6(b) and (c), respectively). To clearly present the
key properties, Table 1 summarizes the measured n, y, 7, S, S°0,
Cp, and « values of Cu-doped SnSe at both room temperature
(300 K) and high temperature (873 K). As can be seen, with
increasing the Cu doping level, 7 is drastically enhanced by
roughly one order of magnitude from 1.82 x 10" to 3.44 x 10'®
em™® at room temperature, resulting in an obvious o
enhancement. This is because with an increase in the Cu
doping level, the proportion of Cu’ in the SnSe system is
increased, resulting in the rise in n. For u, Fig. 6(c) indicates the
relationship with T. In fact, the relation of the power law (u o
T9) governs the variation of u as a function of T.***> There are
two regions for u. In the first region, from 300-673 K, u
decreases with T roughly following the curves related to u o«
T % even though the curves fluctuate more for Cu-doped SnSe,
indicating that the scattering mechanism should still be

Tablel Thep, n, u, o, S, S%0, Cp. and k of Cu-doped SnSe for x = 0, 0.01, 0.02, 0.05, 0.075, 0.1 and 0.118 at both room temperature (300 K) and

high temperature (873 K)

Parameter x=20 x = 0.01 x = 0.02 x = 0.05 x = 0.075 x=0.1 x =0.118
p (g em™) 6.084 6.068 6.089 6.112 6.125 6.14 6.142

n (cm™?) at 300 K 1.82 x 10" 2.84 x 10" 4.63 x 10" 9.48 x 10" 1.7 x 10'® 2.94 x 10"® 3.44 x 10"®
n (cm®) at 873 K 1.81 x 10'® 1.60 x 10'® 2.31 x 10"® 3.86 x 10'® 6.48 x 108 1.58 x 10"° 2.04 x 10"
w(em® v s71) at 300 K 160.7 112.9 85.6 76.2 71.6 58.3 57.2
w(em? v s7) at 873 K 34.0 30.2 28.5 27.7 24.5 18.7 16.4

o (Sem™") at 300 K 4.7 5.1 6.4 11.6 19.5 27.4 31.6
o(Sem™")at 873 K 9.9 7.7 10.5 17.1 25.4 47.5 53.7

S (uv K1) at 300 K 504.6 481.8 458.4 408.1 355.3 297.9 282.7

S (VK ') at873 K 433.5 422.3 406.2 387.2 356.8 324.6 315.3

8% (W em ™' K?) at 300 K 1.19 1.2 1.33 1.93 2.46 2.43 2.52

S% (LW em ' K ?) at 873 K 1.85 1.38 1.74 2.57 3.24 5.01 5.34

CpJg "X M at300K 0.273 0.272 0.270 0.260 0.257 0.253 0.252
C,(Jg 'K " at873K 0.288 0.286 0.283 0.272 0.267 0.264 0.262

kK (Wm " K ") at 300 K 0.93 0.86 0.82 0.73 0.68 0.62 0.58
k(Wm™ 'K ") at873 K 0.47 0.45 0.43 0.4 0.36 0.33 0.33
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dominated by acoustic phonon scattering.’®** In the second
region, at high temperatures of 673-873 K, u increases with T
roughly following the curves related to u « 7°°, which
contributes to higher electrical transport properties above 673
K, indicating that an additional scattering mechanism should
exist.***> Previous studies have shown that potential barrier
scattering at grain boundaries and/or crystal defects combined
with phonon scattering may cause such a special u « 79 rela-
tionship.****** Considering that our Cu-doped SnSe has inten-
sive crystal defects, these results are reasonable. Meanwhile, an
increase in the Cu doping level, u decreases gradually, which
should be derived from the lattice distortion in SnSe, which
scatters the transport of carriers. Fig. 6(d) shows the measured
temperature-dependent S values for pellets with different x
values, in which giant S values can be observed within the
moderate temperature range (from 450 to 700 K), similar to the
case for SnSe single crystals.® The peak S value found in single
crystals (~600 uV K" at 525 K along the a-axis)® is slightly lower
than our peak S value (~700 pv K" at 523 K with x = 0.01). Such
peak S values come from the bipolar transport.’® With
increasing x, the bipolar transport occurring shifts slightly to
a higher temperature, indicating the increase of n. Fig. 6(e)
shows the determined temperature-dependent $*¢ data for
pellets with different x values. It is clear to see that the ¢ values

1.5 AV P\I T
a AR
1.0 («\Q
305
)
o 0.0
c
L
0.5
1.0
X
c100
o e SnSe
ol Eim—sy  (Sne]
601
(7))
8
40}
20}
0 n e
L

-1 0 1
Energy (eV)

7384 | Chem. Sci., 2018, 9, 7376-7389

View Article Online

Edge Article

play a dominant role in determining S°¢, and the peak S°o value
of 5.57 uW em ™" K2 can be found at high temperature (823 K)
in the Sng gg,Cug 11gSe pellet.

To further understand the electrical transport properties of
our heavily Cu-doped SnSe, we performed density function
theory (DFT) calculations to illustrate the evolution of the band
structure of SnSe after Cu-doping. Fig. 7(a) and (b) show the
calculated band structures of SnSe before and after heavy Cu-
doping, respectively, and the valence band maxima are both
pinned to 0 eV in energy. For pure SnSe, as shown in Fig. 7(a),
two distinct conduction band minima can be observed around Y
and I points of the Brillouin zone, which are denoted as CB,
and CB,, respectively. For the valence band, six maxima can be
clearly depicted, with two principal ones lying along the I'-Z
line. For the heavily Cu-doped SnSe, as shown in Fig. 7(b), there
are also two distinct conduction band minima around the Y and
I' points of the Brillouin zone, denoted as CB; and CB,.
However, for the valence band, different from the pure SnSe, the
maxima is not as sharp as pure SnSe, and obvious band
convergence of multiple-valences can be observed after heavy
Cu-doping, which is responsible for the enhanced $%¢.>%
Fig. 7(c) and (d) show the calculated density of states (DOS) of
SnSe before and after heavy Cu-doping, respectively. Taking
Fig. 7(a) and (b) into the consideration, it is clear that the doped
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Fig. 7 Calculated band structure of (a) SnSe and (b) Snggg>Cup118Se, and the calculated density of states (DOS) of (c) SnSe and (d)
Sno.gg2Cuo 1185€.
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Cu (mainly by Cu_d) enhances the DOS at the valence bands,
indicating the increase of n, agreeing with the experimental
results. Overall, the heavy Cu-doping can significantly improve
the hole concentration in SnSe and result in an enhanced S°g.

By using k = DCp,p,"° the temperature-dependent « values for
pellets with different x values can be calculated and plotted, as
in Fig. 6(f). The D values are plotted in the inset of Fig. 6(f) as
a reference, and the measured C;, and p values are also listed in
Table 1. With increasing x, « decreases gradually, which could
be derived from increased lattice distortions in SnSe, which
contribute to effective phonon scatterings. A low « of 0.32 W
m ™' K ! is achieved at 823 K in the Snggs,Cugq15Se pellet.

View Article Online

Chemical Science

Because the densities of our sintered pellets are relatively high
(all >98.2%),>** these « values are close to the intrinsic value of
isotropic SnSe. To understand the observed low « in our pellets,
we investigated the lattice contributions (k) and electrical
contributions (k). ke and k; are determined by . = LoT and «; =
Kk — ke according to the Wiedemann-Franz law,*® where L is the
Lorenz number and L = 1.5 x 10~ ° V> K2 is used in this study,
as calculated using the single parabolic band model*** as shown
with calculation details in Section 6 of the ESI.T In fact, L = 1.5 X
10~® V? K2 has been widely used previously since, for SnSe, the
k significantly depends on phonon scattering.>*'** Fig. 6(g)
shows plots of the determined temperature-dependent k. for
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3 LL xRay JR] x=0.118,/ = x=0.118, /I
Sa f 4
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(a) XRD patterns of sintered SnSe pellets (both pure SnSe and Sng gg2Cuo 1185€) measured along both the L (yellow line) and || (blue line)

direction. (b) Magnified XRD patterns to see the peak deviation at 111* and 400*. SEM images of polished surfaces taken from sintered (c) SnSe
and (d) Sng gg2Cug 1185€e pellets. (e) Corresponding EDS mapping results for (d). (f) Magnified TEM image taken from a laminar TEM specimen
sliced using an ultramicrotome as shown in the inserted TEM image. (g) [100] zone-axis HRTEM image with inserted FFT pattern to show strain

contrast. (h) HRTEM image to show a grain boundary.
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pellets with different x values, in which the obtained ¢ shown in
Fig. 6(a) were used for determining k.. Our obtained «. values
possess the same trend as for o, but the values are very low (all
<0.05 W m~" K" over the entire temperature range). Fig. 6(h)
plots k; using x; = k — k. for pellets with different x values, where
all of the «; values are significantly low, in particular, only
~0.25Wm ™ ' K ' at 823 K for x = 0.118. It should also be noticed
that our achieved «; value is close to the calculated minimum
k1 (K1 min) via a classical Debye-Cahill model,* from which the
calculated Ky i, were 0.26, 0.36 and 0.33 W m~ ' K~ ' along the
a-, b- and c-axis,*"” respectively. In fact, because this calculation is
based on the intrinsic SnSe without doping and an ideal relative
density of 100%, our achieved , values are slightly lower than the
calculated «; min, which is reasonable. The inset of Fig. 6(h) shows
the plots of «; as a function of 1000/7 for pellets with different x
values and all show a linear relationship, indicating that the
phonon scatterings are dominated by the Umklapp phonon
scattering.*** Such low «; values are attributed to the strongly
anharmonic bonding,****” as well as crystal imperfections such
as the lattice distortions caused by local non-uniform doping and
dislocations and grain boundaries (or interfaces).®®* The calcu-
lated «y/k ratio for our pellets are all greater than 80%, indicating
that the phonon transport dominates the « values, as shown in
Fig. S6(b) in the ESLT Fig. 6(i) shows a comparison of experi-
mental ZT values with predicted values by calculation at 823 K,
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where the calculation was based on a single parabolic band
model (detailed calculations can be seen in Section 6 of the
ESIT).”7%7 1t is clear to see that our measured n value (2.04 X
10" cm ) is very close to the predicted value (~3 x 10" cm™?),
which can result in a peak ZT of ~1.5, indicating that there is still
scope for achieving a higher ZT.

To further understand the low «; data, we analysed our sin-
tered pellets by XRD, SEM and TEM characterizations, and the
results are shown in Fig. 8. Fig. 8(a) shows typical XRD results
for both pure SnSe and Snggg,Cugq1gSe pellets; here, all
diffraction peaks for all sintered pellets can be exclusively
indexed as the orthorhombic structured SnSe, and a space
group of Pnma (Standard Identification Card, JCPDS 48-1224),
indicating that the compositional features were successfully
retained after sintering and no other phase was observed.
Fig. 8(b) shows the magnified XRD patterns and demonstrates
the peak deviation at 111* and 400*, from which the samples
cut along the | direction show a strong 400* peak, and the
samples cut along the || direction shows a strong 111* peak.
Comparing the XRD results of the two pellets, it is clear that the
111* peak of Sny ggCup 115Se is much stronger than that of pure
SnSe along the 1 direction, and the 400* peak of Sng gg,-
Cuy.115Se is also stronger than that of pure SnSe along the ||
direction, both indicating that Sng gs,Cuo.1155€¢ pellets possess
a much weaker anisotropy than pure SnSe pellets. Besides,

Table 2 Comprehensive summary of the thermoelectric performance of p-type doped polycrystalline SnSe. Here, solvothermal is abbreviated
as ST, hydrothermal is abbreviated as HT, melting is abbreviated as M, zone-melting is abbreviated as ZM, annealing is abbreviated as A, solid-
state solution is abbreviated as SSR, mechanical alloying is abbreviated as MA, hot-pressing is abbreviated as HP, and spark plasma sintering is
abbreviated as SPS. The * means that the n values were measured at room temperature

Synthetic a S S%c K n p

Product method zZlI  T(K (Sem™) (WK') mWm'K? Wm'K" (10°cem™®) (gem™®) Ref.
11.8% Cu-doped SnSe ST + SPS 1.41 823 ~559  ~315.6 ~0.57 ~0.32 1.95 ~6.14  This work
Sn.97Cug 03S€ M + HP 0.79 823 ~350  ~3251 ~0.37 ~0.39 ~0.016* 6.16 31
Sng.95CUg 02S€ M+A+SPS 0.7 773 ~424  ~238.6 ~0.24 0.27 18.4* ~6.12 29
S1.99CUq.015€ HT + HP 1.2 873 ~364  ~313.8 ~0.35 ~0.2 — — 71
Sng.99AZ0.015€ M+A+HP 0.6 750 ~459  ~344.1 ~0.54 ~0.68 ~0.35% ~5.93 33
Sn.00Ag0.015€ M+A+SPS 074 823 ~54.8  ~3309 06 ~0.66 1.9% ~5.99 32
SNy 085A80.0155€ M 1.3 773  ~44.7  ~344.0  ~0.52 ~0.30 ~0.8% 5.87 35
Sng.97AZ0.035€ ST + SPS 0.8 850  ~90.3 ~266.2  ~0.64 ~0.68 0.9% >5.56 36
Sng.99Nag ;1 Se M+A+SPS 0.85 800 ~1004 ~271.5 ~0.74 ~0.50 ~6.5% 5.94 24
Sng.99Nag o1Se M + SPS 0.75 823 ~49.6  ~311.1 0.48 ~0.53 1.0% ~5.99 22
Sng.99Nag ;1 Se M + SPS ~0.8 800 ~812  ~2672 ~0.58 ~0.50 ~1.5 — 21
SnNg.0s5Nag 0155€ M+MA+HP ~0.8 773 ~37.9  ~298.8 ~0.34 ~0.33 ~2.1% 5.81 23
Sn.9Nag o, Se SPS 0.87 798 ~56.4  ~288.8  0.47 0.4 3.08* ~5.81 26
Sng.9;Nag 3Se SPS 0.82 773  ~65.1 ~280.2  ~0.51 ~0.50 ~2.2 ~5.93 72
Sn6.99N2g,005Ko.0055€ MA + SPS 1.2 773 ~349  ~374.7 ~0.49 0.32 ~7.2% 5.71 25
SNg.095Nag.0055€Clo.00s  SSR + HP 0.84 810 ~79.2  ~228.6 ~0.41 ~0.39 ~3.95% ~5.93 73
Sng.9oNag 01S€0.8aT€016  MA + SPS 0.72 773 ~67.4  ~275.0 ~0.51 ~0.50 — — 74
(Sno.06Pbo.04)0.00Nag.01Se M + SPS ~1.2 773 ~89.4  ~269.7 ~0.65 ~0.45 ~2.8 — 27
Sn6.99Ko.015€ MA + SPS ~11 773 ~18.6  ~4214  ~0.33 ~0.24 0.92* — 28
SN6.995Tlo.0055€ M + HP 0.6 725 ~689  ~300.0 ~0.62 ~0.75 — ~5.99 75
Sng.9oIng o1 Se M + HP 02 823 ~6.53 ~350.0  ~0.08 ~0.36 ~0.03* ~5.87 76
Sng.0Geg.1Se M — 400 — ~843.2 — ~0.39 — — 77
Sng.96Geg.04S€ ZM + HP 0.6 823 356 ~378.5  0.51 ~0.7 ~0.03* >5.81 78
Sng.99Z1,015€ M + HP 0.96 873 ~74.1 ~328.5 0.8 ~0.73 ~0.45 — 79
Sng.97SmMy 93Se M + HP 0.55 823 ~33.6  ~250.0 ~0.21 ~0.32 ~0.013* — 42
SnSeo.0g5Clo.o15 M 1.1 773 ~25.5 ~399.3  ~0.41 ~0.30 ~0.01* 5.87 35
SnSeg o Teg 4 ST + SPS 1.1 800 ~57.4  ~322.8 ~0.60 ~0.44 ~1% ~5.87 55
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compared with the pure SnSe pellets, the 111* and 400* peaks
from the Snggg,Cug11gSe pellets shift towards a higher 26,
indicating that Cu atoms are still incorporated into the SnSe
lattice. Fig. 8(c) and (d) show SEM images of polished surfaces
taken from sintered pure SnSe and Snggg,Cugq15Se pellets
along their L directions, respectively. The comparison indi-
cates that the Cu-doped SnSe pellet possesses a much smaller
grain size than that of the pure SnSe pellet, derived from the
difference of their product sizes before sintering. Besides, this
comparison also explains why the anisotropy of the thermo-
electric performance for the Snggg,Cug15Se pellet becomes
weaker than that of the pure one. Fig. 8(e) shows the corre-
sponding EDS map results for the Snggg,Cug115Se pellet, in
which all elements are uniform at a microscale, indicating the
stability of the compositions before and after sintering.
Through detailed EPMA studies on the Sng gg,Cug.11g5€ pellet,
the ratio of Sn: Cu: Se was measured as 44.12 : 5.89 : 49.99,
indicating the stable composition of Sn g3,Cuy 115Se. Fig. 8(f) is
a magnified TEM image taken from a laminar TEM specimen
sliced using an ultramicrotome (inset TEM image in Fig. 8(f)), in
which cracks (fractured during ultramicrotome processing) can
be seen due to the weak van der Waals force between the Sn-Se
layers. Nevertheless, crystals can be seen between the cracks,
which can be used to evaluate the structural characteristics of
the sintered pellets. Fig. 8(g) is a [100] zone-axis HRTEM image
with inset the fast Fourier transform (FFT) pattern, where strain
contrast is observed. Fig. 8(h) is another HRTEM image taken
from a typical grain boundary. Such local structural variations
cause lattice distortions, which in turn enhance the phonon
scatterings and contribute to the low «; values. All these results
demonstrate that the compositional and structural features
have been successfully retained during the sintering. In fact, the
“intensive crystal imperfections” were derived from the
synthesis, which were shown in Fig. 3 and 4.

To compare the thermoelectric properties in more detail,
Table 2 summarizes the main thermoelectric properties,
including Z7, g, S, §%0, k, n and p with the similar studies of
p-type doped SnSe. As can been seen, the low x and moderate
o values play the dominant role in achieving the competitive
high ZT figures in our heavily Cu-doped SnSe. Section 7 in the
ESIt also summarizes both average and peak ZT values with the
similar studies of p-type doped SnSe, indicating that our heavily
Cu-doped SnSe is very competitive.

Conclusions

In conclusion, a high doping limit of Cu at 11.8% has been
achieved in single-crystal Cu-doped SnSe microbelts for the first
time synthesized via a facile solvothermal method. Through
detailed structural and chemical characterizations, with
increasing the Cu doping level, the morphology of Cu-doped
SnSe transfers from rectangular plates to microbelts. Both Cu”
and Cu®" co-exist in the microbelts. Lattice distortions are
observed, which play a dominant role in keeping the heavily
doped SnSe microbelts as an orthorhombic structure. Besides,
the pellets sintered from such heavily Cu-doped microbelts
demonstrate a high thermoelectric performance. The high ZT

This journal is © The Royal Society of Chemistry 2018
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value of ~1.41 at 823 K was achieved, coming from the high
power factor and low thermal conductivity. This study fills in
the gaps of the existing knowledge concerning the doping
mechanisms of Cu in SnSe systems, and provides a new strategy
for achieving a high thermoelectric performance in SnSe-based
thermoelectric materials.

Experimental section

General procedures and materials

The precursors include SnCl,-2H,O (99.99%), Na,SeO;
(99.99%), CuCl, (99.99%), ethylene glycol anhydrous (99.8%),
and NaOH (99.99%), all of which were purchased from Sigma-
Aldrich Co. LLC. The solvothermal reactions can be expressed
as:**

SnCl,-2H,0 — 2% sp?t 4 2CI” + 2H,0 (1)
cuCl, 2%, cu?t + 201 )

ACT + CH0, MM 4cut 4 GH0, + 4HT (3)
Na,SeO; —, 2Na* + SeO’ (4)

Se0;>” + C,H40, — Se + C,H,0, + H,O + 20H™  (5)

Se + Sn** — Se?” + Sn** (6)

(1-x=1)Sn>* + xCu** + yCu* + Se*~ —
Sny_,_,Cu,+,Se (not balanced). (7)

Here NaOH (99.99%) was used to adjust the environment of
the solvent, and ethylene glycol (EG, 45 ml) acted as both the
solvent and the reducing agent, which benefited the ion reac-
tion.***>** The solution was kept stirring for 10 min at room
temperature, before being sealed in a polytetrafluoroethylene-
lined stainless steel autoclave (125 ml). The autoclave was
heated at 230 °C for 36 h in an oven, followed by furnace cooling
to room temperature. The synthesized products were collected
by centrifugation, and the secondary phase (Cu,Se) was
removed via ultrasonic-assisted sedimentation. The purified
products were then washed using ethanol and deionized water
several times, before drying in the oven at 60 °C for 15 h.

Instruments

The synthesized products were characterized by XRD (Bruker-
D8) to determine their crystal structures, and by XPS (Kratos
Axis Ultra) to determine the valence state of Cu in the SnSe (the
energy scale was calibrated by carbon). Lattice parameters were
obtained by analysing the diffraction patterns using the JADE
software package. EPMA (JEOL JXA-8200) was used to determine
their compositions. SEM (JSM-6610, JEOL Ltd.) was used to
obtain the morphological characteristics of the synthesized
products, and HR-TEM (TECNAI-F20) and Cs-corrected HR-
STEM (Titan-G2) were used to characterize their structural
and chemical features. The TEM specimens of the sintered
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samples were prepared by slicing the sample using an
ultramicrotome.

Property measurement

The synthesized products were sintered by spark plasma sin-
tering (SPS, SPS-211Lx, Fuji Electronic Co., Ltd.) with a pressure
of 60 MPa at 900 K for 5 min to form disc-shaped pellets with
dimensions of & = 12.6 mm and % = 8.0 mm. The Archimedes
method was used to measure the density p. A Seebeck
coefficient/electric resistivity measuring system (ZEM-3, ULVAC
Technologies, Inc.) was used to simultaneously measure ¢ and S
between 300 and 873 K. The laser flash diffusivity method (LFA
457, NETZSCH Group) was used to measure the thermal diffu-
sivity D, and « was calculated by x = DCpp,* where Cj, is the
specific heat capacity obtained by differential scanning calo-
rimetry (DSC 404 C; NETZSCH Group). The van der Pauw
technique was used to measure n under a reversible magnetic
field of 1.5 T. Each pellet is measured at least three times to
ensure the repeatability of their thermoelectric properties. The
measured repeatability is achieved with fluctuations of ¢, S and
k being 10%, 1.5% and 5%, respectively, as shown in Fig. S8 of
the ESLt

Density functional theory (DFT) calculations

DFT calculations were based on the full potential linearized
augmented plane-wave (FP-LAPW) method® implemented in
the WIEN2K code.*® Supercells of 2 x 2 x 2 unit cells of SnSe
were built for the purpose of randomly replacing Se sites with
Cu atoms. The generalized gradient approximation (GGA) and
the Perdew-Burke-Ernzerhof (PBE) functional were used to
describe the exchange and correlation interactions.* The elec-
tronic band structures and the density of states values were
calculated after self-consistency cycle calculation with the
convergence criteria set as energy less than 0.0001 Ry and the
leaking charge less than 0.0001 eV.
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