Catecholamine-functionalized graphene as a biomimetic redox shuttle for solar water oxidation
Abstract
In natural photosynthesis, solar energy is converted to chemical energy through a cascaded, photoinduced charge transfer chain that consists of primary and secondary acceptor quinones (i.e., QA and QB). This leads to an exceptionally high near-unity quantum yield. Inspired by the unique multistep architecture of charge transfer in nature, we have synthesized a catecholamine-functionalized, reduced graphene oxide (RGO) film as a redox mediator that can mimic quinone acceptors in photosystem II. We used polynorepinephrine (PNE) as a redox-shuttling chemical. We also used it to coat graphene oxide (GO) and to reduce GO to RGO. The quinone ligands in PNE, which are characterized by a charge transfer involving two electrons and two protons, acted as electron acceptors that facilitated charge transfer in photocatalytic water oxidation. Furthermore, PNE-coated RGO film promoted fast charge separation in [Ru(bpy)3]2+ and increased the activity of cobalt phosphate on photocatalytic water oxidation more than two-fold. The results suggest that our bio-inspired strategy for the construction of a forward charge transfer pathway can provide more opportunities to realize efficient artificial photosynthesis.
- This article is part of the themed collection: Artificial Photosynthesis