A near-infrared fluorescent sensor for selective detection of cysteine and its application in live cell imaging†
Abstract
Biological thiols, including cysteine (Cys), homocysteine (Hcy) and glutathione (GSH), play important roles in maintaining the appropriate redox status of biological systems. The discrimination between them is of great importance because of their different biological roles. Herein, we present a new near-infrared (NIR) fluorescent sensor Cy-NO2 for selective detection of Cys over Hcy/GSH. The nitrothiophenol group is introduced to quench the fluorescence through photo-induced electron transfer (PET). The sensor undergoes displacement of nitrothiophenol with thiol to turn on the fluorescence. The amino groups of Cys/Hcy further replace the thiolate to form amino-substituted products, which exhibit dramatically different photophysical properties compared to the sulfur-substituted product from the reaction with GSH. By means of more rapid intramolecular displacement of sulfur with the amino group of Cys than Hcy, the discrimination of Cys is achieved. Moreover, Cy-NO2 was successfully applied for bioimaging Cys in living cells.
- This article is part of the themed collections: Organic chemistry collection and Cellular and Tissue Imaging – Luminescent Tags and Probes