Mass spectrometry detects folding intermediates populated during urea-induced protein denaturation

Abstract

Protein folding stability can be probed using urea, a chaotropic agent that disrupts non-covalent interactions at molar concentrations. The denaturation process is typically monitored via optical spectroscopy, which provides ensemble-averaged measurements and may struggle to resolve folding intermediates. In contrast, electrospray ionization mass spectrometry (ESI-MS) captures a non-averaged snapshot of all populated assembly and folding states within a protein conformational ensemble. However, high urea concentrations have traditionally been considered incompatible with ESI. Here, we leverage recent advancements in nano ESI emitter design, utilizing well-defined small-diameter emitters which enables protein charge states to be resolved from solutions containing up to 8 M urea. This approach allows us to directly detect the disruption of native tertiary and quaternary structures and to monitor stability changes in response to solution pH and ligand binding. We demonstrate this using single-domain proteins that follow simple two-state unfolding pathways, as well as more complex multidomain proteins and multimeric protein complexes. Our results show strong agreement with conventional urea-denaturation curves obtained via optical spectroscopy, while also providing enhanced resolution of intermediate folding and assembly states that are challenging to capture using traditional methods.

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Edge Article
Submitted
31 Jul 2025
Accepted
22 Oct 2025
First published
23 Oct 2025
This article is Open Access

All publication charges for this article have been paid for by the Royal Society of Chemistry
Creative Commons BY license

Chem. Sci., 2025, Accepted Manuscript

Mass spectrometry detects folding intermediates populated during urea-induced protein denaturation

N. Österlund, J. S. Jordan, E. Renzi, G. P. Szekeres and K. Pagel, Chem. Sci., 2025, Accepted Manuscript , DOI: 10.1039/D5SC05773F

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence. You can use material from this article in other publications without requesting further permissions from the RSC, provided that the correct acknowledgement is given.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements