Volume 198, 2017

Development of a dye molecule-biocatalyst hybrid system with visible-light induced carbon–carbon bond formation from CO2 as a feedstock

Abstract

Recently, CO2 utilization technology, including artificial photosynthesis, has received much attention. In this field, CO2 is used as a feedstock for fuels, polymers and in other chemical processes. Of note are malic enzymes (MEs) which catalyze the reaction of malic acid to pyruvic acid and CO2 with the co-enzyme NADP+, and catalyze the reverse reaction of pyruvic acid and CO2 to malic acid with the co-enzyme NADPH. Thus, MEs are also an attractive biocatalyst for carbon–carbon bond formation from CO2. Studies of the visible light-induced malic acid production from pyruvic acid and CO2 using an electron donor, a photosensitizer, an electron mediator, ferredoxin-NADP+ reductase, NADP+, and ME have been reported. However, modification of these systems is required, as they are very complicated. In this study, the visible light-induced carbon–carbon bond formation from pyruvic acid and CO2 with ME using the photoreduction of 1,1′-diphenyl-4,4′-bipyridinium salt derivatives as a novel electron mediator with water-soluble tetraphenylporphyrin tetrasulfonate (H2TPPS) in the presence of triethanolamine (TEOA) as an electron donor was developed. When a sample solution containing TEOA, H2TPPS, 1,1′-diphenyl-4,4′-bipyridinium salt derivative, pyruvic acid, and ME in CO2-saturated bis–tris buffer was irradiated, the major product was oxaloacetic acid. Thus, a visible light-induced photoredox system for carbon–carbon bond formation from CO2 with ME using 1,1′-diphenyl-4,4′-bipyridinium salt derivative as an electron mediator was developed.

Associated articles

Article information

Article type
Paper
Submitted
08 okt 2016
Accepted
10 nov 2016
First published
10 nov 2016

Faraday Discuss., 2017,198, 73-81

Development of a dye molecule-biocatalyst hybrid system with visible-light induced carbon–carbon bond formation from CO2 as a feedstock

Y. Amao, S. Ikeyama, T. Katagiri and K. Fujita, Faraday Discuss., 2017, 198, 73 DOI: 10.1039/C6FD00212A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements