Visible light-driven water oxidation with a ruthenium sensitizer and a cobalt-based catalyst connected with a polymeric platform†
Abstract
A facile synthesis for a photosensitizer–water oxidation catalyst (PS–WOC) dyad, which is connected through a polymeric platform, has been reported. The dyad assembly consists of a ruthenium-based chromophore and a cobalt–iron pentacyanoferrate coordination network as the water oxidation catalyst while poly(4-vinylpyridine) serves as the bridging group between two collaborating units. Photocatalytic experiments in the presence of an electron scavenger reveal that the dyad assembly maintains its activity for 6 h while the activity of a cobalt hexacyanoferrate and Ru(bpy)32+ couple decreases gradually and eventually decays after a 3 h catalytic experiment. Infrared and XPS studies performed on the post-catalytic powder sample confirm the stability of the dyad during the catalytic process.
- This article is part of the themed collection: Artificial photosynthesis