Issue 12, 2019

Bottom-up biofilm eradication using bacteriophage-loaded magnetic nanocomposites: a computational and experimental study

Abstract

Biofilms cause a variety of pervasive problems in water treatment, distribution and reuse systems that are difficult to mitigate due to their resistance to disinfectants. We used magnetic phage-nanocomposite conjugates (PNCs) to target bacteria in biofilm inner layers for bottom-up eradication. Polyvalent Podoviridae phages PEB1 (54 nm) or PEB2 (86 nm) were covalently conjugated (via amide bonds) with magnetic colloidal nanoparticle clusters (CNCs) of different sizes (150, 250 or 500 nm). Smaller CNCs with higher density of amino groups loaded phages more efficiently than the largest CNCs (e.g., for PEB1, 60 ± 4, 62 ± 5, and 47 ± 4 phages were loaded per μm2). Smaller PNCs dispersed phages more evenly throughout the biofilm bottom, significantly disrupting the biofilm bottom layer and detaching the biofilm within 6 h. The biofilm removal efficiency was 98.3 ± 1.4% for dual species biofilm (i.e., Escherichia coli and Pseudomonas aeruginosa) and 92.2 ± 3.1% for multi-species biofilm (i.e., E. coli, P. aeruginosa, and non-hosts Bacillus subtilis and Shewanella oneidensis). Large PNCs caused higher physical disruption but lower corresponding removal efficiencies (i.e., 80.2 ± 3.4% for dual species biofilm and 67.6 ± 3.8% for multi-species biofilm) due to lower horizontal diffusion at the bottom of the biofilm. A semi-empirical numerical model corroborated the higher biofilm removal efficiency with smaller PNCs and inferred that PNC size influences the mode of phage propagation: Small PNCs facilitate biofilm bottom clearance with significant horizontal dispersion while large PNCs mainly enhance vertical propagation. Overall, this study demonstrates the importance of size control to enhance the biofilm eradication capability of PNCs as an alternative or complementary biofilm control strategy.

Graphical abstract: Bottom-up biofilm eradication using bacteriophage-loaded magnetic nanocomposites: a computational and experimental study

Supplementary files

Article information

Article type
Paper
Submitted
21 jul 2019
Accepted
05 sep 2019
First published
06 sep 2019

Environ. Sci.: Nano, 2019,6, 3539-3550

Author version available

Bottom-up biofilm eradication using bacteriophage-loaded magnetic nanocomposites: a computational and experimental study

P. Yu, Z. Wang, M. Marcos-Hernandez, P. Zuo, D. Zhang, C. Powell, A. Y. Pan, D. Villagrán, M. S. Wong and P. J. J. Alvarez, Environ. Sci.: Nano, 2019, 6, 3539 DOI: 10.1039/C9EN00827F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements