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Methodologies for the Taylor Dispersion Analysis for mixtures, aggregates and the 

mitigation of buffer mismatch effects 

Seyi Latunde-Dada*, Rachel Bott, Karl Hampton, Jenika Patel and Oksana Iryna Leszczyszyn
 

Malvern Instruments Ltd., Grovewood Road, Malvern, Worcestershire, WR14 1XZ, UK. 

 

ABSTRACT: Taylor Dispersion Analysis (TDA) is a fast and simple method for determining hydrody-

namic radii. For a mixture of solutes, current TDA methods lead to an average hydrodynamic radius for 

the different constituents of the mixture. In this paper, we first derive this average for the fitting method. 

Next, we present a method of deconvoluting a taylorgram from a mixture into its constituent taylor-

grams so that the hydrodynamic radii and relative proportions of the individual components can be ob-

tained. Using the differentials and integrals of the taylorgram, near-accurate initial estimates for the pa-

rameters of the constituent taylorgrams are obtained. These are used as seed parameters in least-squares 

fitting algorithms which find the optimum solutions for the constituent taylorgrams. Furthermore, the 

proximity of the seed parameters to the solutions is a measure of the confidence in the accuracy of the 

fits. The method is applied to two-, three- and four- component mixtures as well as aggregated samples 

with good agreement obtained between the results and the expected values. In addition, a fitting method 

which mitigates the effect of concentration mismatches between the eluent phase and the sample matrix 

phase is presented. 

1. Introduction 

Taylor dispersion analysis (TDA) is a fast and 

absolute method for determining the diffusion 

coefficients, and hence the hydrodynamic radii of 

molecules. The method, sometimes referred to as 

Taylor-Aris dispersion, was first described by 

Taylor in his classic paper
1
. In 1956, Aris devel-

oped the method further by accounting for the 

longitudinal diffusion of the molecules
2
. 

In the early years, this technique was applied to 

the determination of gaseous
3
 and liquid diffu-

sion coefficients
4-6

. With the use of fused silica 

microcapillaries, TDA regained interest and has 

been used to analyze amino acids, peptides, pro-

teins, small molecules, macromolecules, nano-

particles and biosensors
7-24

.  Since it is absolute, 

no calibration is required and the knowledge of 

the sample concentration is not required. 

The diffusion coefficient of the injected solute 

can be deduced by fitting Taylor’s solution to the 

concentration profile or taylorgram of the so-

lute
25

. Alternatively, this can be achieved by cal-

culating the moments of the profile
3-8, 12, 26, 

27
(moment method) or by measuring its height 

and area
28

. The analysis can either be carried out 

at a single detection point or at two spatially sep-

arated detection points. These methods are re-

ferred to as single detection TDA and double de-

tection TDA respectively. 

There have been studies dealing with the use of 

TDA for mixtures of solutes and, more specifical-

ly for aggregation analysis
16, 17, 21, 26, 29-33

. Most of 

these methods have relied on the use of the mo-

ment and area-height methods to calculate aver-

age diffusion coefficients for mixtures. These av-

erages vary depending on the TDA method used. 

For example, if a mass-concentration-sensitive 

detector is used, the moment method gives a 

mass-weighted harmonic average diffusion coef-

ficient
17 

whilst the area-height method gives the 

square of the mass-weighted average value of the 

square roots of the individual diffusion coeffi-

cients
25, 27

. These averages are known as Taylor 

average diffusion coefficients which can be con-

verted to Taylor average hydrodynamic radii. A 

recent method known as the cumulant method 

has been used
30

 to compute a polydispersity in-

dex based on the ratio between the Taylor aver-

age from the moment method and the gamma av-

erage diffusion coefficient. Another method pro-

posed recently
31

 proposes the use of the Con-

strained Regularized Linear Inversion (CRLI) 

approach as a new data processing method to ex-

tract the probability density functions of diffusion 

coefficients from taylorgrams. This is a more rig-
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2

orous approach which requires no a priori 

knowledge of the number of components. 

The fitting method for TDA provides functions 

which closely match the taylorgram by adjusting 

the parameters of the functions. To do this effec-

tively requires the input of seed parameters 

which act as initial estimates from which the fit-

ting algorithm can find the optimum solutions.  

In general, the better the initial parameter esti-

mates, i.e. the closer the initial estimates are to 

the optimal solutions, the greater is the probabil-

ity of finding the optimal solutions. The more 

unconstrained or random an initial estimate is, 

the higher the risk of finding spurious local min-

ima which lead to inaccurate or unphysical solu-

tions.  

There are currently a few methods that provide 

initial estimates for multi-component taylorgrams 

using information intrinsic to the distribution in 

question. Such a method could pave the way for 

more accurate, reproducible and robust deconvo-

lution of the hydrodynamic radii and composition 

of taylorgrams generated by solute mixtures and 

make TDA a viable option for the characteriza-

tion of solute mixtures and reversible aggregates 

in biopharmaceutical formulations without the 

need for separation. An example of such a meth-

od involved the use of the diffusion coefficients 

obtained from the cumulant method or from an 

equivalent log-normal distribution to constrain 

the range of possible diffusion coefficients for the 

CRLI approach
31

.  

In this paper, alternative methods for the deter-

mining the initial parameter estimates for multi-

component taylorgrams are presented. These are 

obtained by differentiating and integrating the 

taylorgram and solving the resulting sets of linear 

equations. The estimates are then used as seeds 

for a least-squares fitting algorithm to obtain the 

individual diffusion coefficients and relative pro-

portions of the components of a mixture. Fur-

thermore, the closer the fitted parameters are to 

the initial estimates, the greater the degree of 

confidence in the accuracy of the results.  

In addition, TDA requires that the concentrations 

of the eluent phase (run buffer) and the sample 

matrix phase (sample buffer) be matched. This, 

however, is not always achieved experimentally 

and usually results in a negative contribution to 

the taylorgrams which give biased results. By 

treating the mismatch in concentration as an in-

dependent contribution to the taylorgram, it is 

possible to isolate this contribution to enable the 

analysis of the solute. This fitting method is also 

presented in this paper. 

The paper is arranged as follows. First, the least-

squares fitting method as applied to a single so-

lute component will be described and the expres-

sion for the Taylor-average hydrodynamic radius 

from applying this fit to a multi-component tay-

lorgram without deconvolution is derived. Next, 

the methods of parameter estimation for multi-

component mixtures will be presented as well as 

the method for mitigating the effects of mis-

matched buffer phases. These methods are then 

used to analyze a range of solute mixtures and 

aggregated samples. The results from the fits are 

compared to the expected values. 

 

2. Theoretical Methods 

2.1. The least-squares fitting method and 

the Taylor-average hydrodynamic radius 

The theoretical concentration distribution C 

which arises at a time t when a solute made up of 

a single component type undergoes Taylor dis-

persion is given by:  

 �	 ∝ ������ �	
��
	
�����
  

                  

(1) 

where C0 is the initial solute concentration, tr is 

known as the mean residence time, u  is the mean 

flow speed of the carrier solution and k is the dis-

persion coefficient.  

At large values of t, Equation 1 is approximated 

by a Gaussian distribution: 

 � = 	��	�
	
������  
                  

(2) 

where A is the peak amplitude, the dispersion co-

efficient k is related to the standard deviation of 

the Gaussian σ by 

 � = ����2��  
                  

(3) 

Note that the standard deviations have units of 

time. The diffusion coefficient D and hydrody-

namic radius Rh are related to k by: 
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� = �����48�  
                    

(4) 

� = �!"6$%�	                     

(5) 

 where rc is the capillary radius, kB is Boltz-

mann’s constant, T is the temperature and η is the 

viscosity of the carrier solution. 

The standard deviation σ can be determined by 

fitting Equation 2 to the taylorgram. Typically, a 

least-squares fitting method is employed and to 

ensure an accurate fit, the unknown parameters 

such as A, tr and σ are initially estimated. The 

peak amplitude A is estimated as the maximum 

value of the taylorgram, the residence time tr is 

estimated as the time at which this maximum oc-

curs whilst σ is determined from the width of the 

taylorgram at half the maximum value. These 

initial parameter estimates serve as seeds from 

which the fitting algorithm can find the optimum 

solution.  

Compared to the method for single-component 

taylorgrams, the estimation of the parameters is 

not as straightforward for multi-component mix-

tures because of the increased number of parame-

ters to be estimated. However, in the following 

section, a method using data intrinsic to the tay-

lorgram in question is presented. This relies on 

the differentiation and integration of the taylor-

gram to obtain relations between the parameters 

which can be solved using well-known mathe-

matical techniques.  

The fitted expression to taylorgrams in Equation 

2 has three unknown parameters namely, the 

standard deviation σ, the residence time tr and the 

amplitude A. To obtain the best fit Gaussian to a 

Taylorgram, these three parameters are varied 

until the sum of the residuals R
2
 is minimized. 

For a mixture of solutes, the taylorgram takes on 

a different shape. Assuming, there are no interac-

tions between the samples, the taylorgram can be 

assumed to be the sum of Gaussian distributions; 

one corresponding to each component of the mix-

ture. Hence, the theoretical solution to the n-

component dispersion problem is given by: 

 

& = 	'�()
(*+ . �	�.-..
	
��/ 0�	                     

(6) 

If the single Gaussian distribution  

�1�	�
	
�����2� 	                     

(7) 

is fitted to the multi-component taylorgram in 

Equation 6, the sum of residuals, R
2
, is given by:  

�� ='3�1�	�
	
�����2�

−'�()
(*+ �	�
	
�����/� 	5�	

                 

(8) 

By converting this sum to an integral over time 

and solving for the minima, the following closed 

expressions are obtained for the fitted parame-

ters: �1√2 −' �(�(7�(� + �1�
)
(*+ = 0	 (9)                       

�1√2 −' 2�(�(:��(� + �1��: �⁄
)
(*+ = 0	                        

(10) 

which are simultaneously satisfied by the param-

eters of the best-fit function to the taylorgram. 

Eliminating AF in the Equations 9 and 10 gives 

'�(�(��1� − �(����(� + �1��: �⁄
)
(*+ = 0	 (11)                       

This can be re-written in terms of hydrodynamic 

radii Rh
i
 which scales with σi

2
 and mass-

concentrations Mi which scales with Aiσi to give: 

'<( =� 1 − � ( >=� 1 + � ( >: �⁄
)
(*+ = 0	 (12)                       

where Rh
F
 is the Taylor average hydrodynamic 

radius obtained from the fitting method. As can 

be seen, obtaining an explicit expression for Rh
F
 

is complicated. However, it may be observed that 

the inverse cube of the hydrodynamic radius is 

approximately weighted by the square of the 

mass concentration and hence for a mixture of 

solutes with equal mass-concentrations, the Tay-
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4

lor average hydrodynamic radius is biased toward 

the smaller components. 

 

2.2. Parameter estimation for multi-

component taylorgrams 

In the long time limit of Taylor dispersion, the 

taylorgram obtained from a mixture of n non-

interacting components can be approximated by: 

& = 	'�((*)
(*+ . �	�.-..
	
��/ 0�	                     

(13) 

                                                                                   

where Ai and σi are the respective amplitudes and 

standard deviations for the i-th component, tr is 

the residence time of the mixture at the observa-

tion point and t is the measurement time. 

The residence time tr is estimated as the time at 

which the maximum value of the taylorgram, x 

occurs. Likewise, the sum of the amplitudes Ai is 

estimated by x. 

? ='�((*)
(*+ 		                     

(14) 

Figure 1 shows the second differential 
@�A@
�  of a 

taylorgram with respect to time. This can be ob-

tained by the difference method or by using the 

Savitzky-Golay filter
34

. 

 

 

  

Figure 1. Second differential of a taylorgram. 

 

Its value y at t = tr (or its maximum negative val-

ue) provides an estimate for the following sum: 

B = −C�&C�� ∥
*
� 	= ' �(�(�
(*)
(*+ 	                     

(15) 

Figure 2 shows the integral of a taylorgram over 

time. 

 

   

Figure 2. Integral of a taylorgram. 

 

Its value I at t = tr provides an estimate z for the 

following sum: 

E = �2$ F = � ='�(�((*)
(*+ 	                     

(16) 

Finally, Figure 3 shows the double integration of 

a taylorgram over time. 

 

Figure 3. Double integral of a taylorgram. 

 

Its value u at t = tr provides an estimate for the 

following sum: 

� ='�(�(�(*)
(*+ 	                

(17) 

The four equations, Equations 14-17, provide 

simultaneous equations in the amplitudes Ai and 

standard deviations σi which can be solved for 

mixtures with differing numbers of components. 

In principle further differentials and integrations 

can be computed to establish further relations 

between these parameters but in this paper, the 

equations are limited to the four presented. The 

solutions to these equations can then be used as 

seed parameters for a least-squares fitting algo-

rithm to deconvolve the mixture’s taylorgram. It 

should be noted that even though these seed pa-

rameters are obtained by assuming the compo-

nents have the same residence times, these are 

allowed to vary by the fitting algorithm. From the 

standard deviations of the deconvoluted taylor-

grams, the hydrodynamic radii can be determined 
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for the individual components. Furthermore, with 

knowledge of the extinction coefficient of each 

component, the proportion of each component in 

the mixture can be estimated by computing the 

area under each individual taylorgram. 

There are three different cases (one with four 

sub-cases) to which the methods described above 

can be applied. These are: 

1A) A two-component mixture of unrelated com-

ponents e.g. two different solutes, a monomer 

and its aggregates.  

1B) A two-component mixture where the size of 

one component is known e.g. a monomer of 

known hydrodynamic radius and its aggregates. 

1C) A two- or three-component mixture where 

the components are related but the hydrodynamic 

radii and proportions of the components are not 

known e.g. a mixture of monomer, dimers and 

trimers. 

1D) The individual hydrodynamic radii of all 

components in a two- three- or four-component 

mixture are known but their proportions within 

the mixture are not. 

2) A three- and four- component mixture of unre-

lated components.  

3) A mismatch in the concentrations of the sam-

ple matrix phase (sample buffer) and the eluent 

phase (run buffer) which results in a taylorgram 

which is the sum of two which differ in sign. The 

negative contribution comes from the lower con-

centration of the buffer in the injected sample. 

Typically, the positive contribution of the solute 

is dominant in the taylorgram. Such a scenario 

can arise as a result of evaporation, sample mis-

handling or when solute/buffer components 

change during storage.   

 

The application of the method to each case will 

now be described in turn. 

Case 1A: The two unrelated components have 

distributions with non-negligible amplitudes 

and unknown radii.   

In this case, the four equations, Equations 14-17, 

reduce to: ? = �+ + ��		                

B = �+�+� + �����	  

		E = �+�+ + ����                � = �+�+� + �����		                

(18) 

Solving the four equations simultaneously gives: �+ = 0.5 HI� + J�I��� − 4�K	                

�� = ��+			  

		�� = L	�MN��	�M                         

�+ = ? − ��	                

(19) 

where 

I = �B� − ?��? − E� 	                

� = �EI − ?				 (20) 

Case 1B: The hydrodynamic radius of one of 

the two components is known a priori 

An estimate of the standard deviation of the 

known component is obtained from its hydrody-

namic radius by rearranging Equation 4.  In do-

ing so, one of the four unknown parameters has 

been determined a priori and any three of the 

four equations in Equation 18 may be used to ob-

tain initial estimates for the remaining parame-

ters. There are four such combinations of three 

equations which can be used. 

 

Case 1C: Two or three components with 

known ratios between their hydrodynamic ra-

dii. 

In this case, there is only one unknown standard 

deviation since the other one (or two in the case 

of three components) is related by a ratio known 

a priori. For the case of three components, there 

are three unknown amplitudes and one unknown 

standard deviation. Hence, with the correspond-

ing four equations (cf. Equations 14 – 17, the 

four unknowns (A1, A2, A3 and σ1) can be solved 

for. ? = �+ + �� + �:		                
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B = �+�+� + ��O�+� + �:P�+�		  

E = �+�+ + ��√O�+ + �:√P�+                

� = �+�+� + ��O�+� + �:P�+�		                

(21) 

where a and b are the known diffusion coefficient 

ratios of the second and third components to the 

first component respectively. 

These simultaneous equations can be reduced to 

a single quartic equation in σ1 which can be 

solved using the traditional methods.  From this 

solution, estimates can then be made for A1, A2 

and A3 by substitution. A similar solution can be 

obtained for a mixture of two components by 

solving any three of the four corresponding equa-

tions. 

 

Case 1D: Two, three or four components with 

known hydrodynamic radii. 

In this case, since the hydrodynamic radii are 

known, the only unknowns are the amplitudes. 

Hence, for the general case, Equations 14 – 17 

can be solved for the n (< 5) unknowns (An) by 

reducing them to a matrix equation. The follow-

ing is the equation applicable to n=4 components. 

QRR
RS 1 1 1 11 �+�U 1 ���U 1 �:�U 1 ���U�+ �� �: ���+� ��� �:� ��� VWW

WX Y�+���:��Z = [?BE�\	
                 

 

 (22) 

 

where σ1, σ2, σ3 and σ4 are known a priori (de-

termined from Equation (4). This can be solved 

by well-known matrix methods to obtain initial 

estimates for A1, A2, A3 and A4. For two- (and 

three-) component mixtures a 2 by 2 (and 3 by 3) 

matrix constructed from any two (and three) of 

the four equations may be used to obtain initial 

estimates. 

 

Case 2: A three- and four- component mixture 

of unrelated components. 

In these cases, where there is no a priori infor-

mation about the composition of the mixtures, 

there are six and eight unknowns respectively 

which cannot be solved for explicitly using the 

four equations to obtain the initial parameter es-

timates. However, by assuming the taylorgram as 

an ensemble of two taylograms initially, it is pos-

sible to successively solve the four equations to 

obtain approximations to the initial estimates for 

all the parameters. This approximate method is 

outlined below. 

(i) Assuming, the taylorgram is a mixture of two 

taylorgrams, use the method of Case 1A to solve 

for the two parameter pairs (A1', σ1') and (A2', 

σ2'). Let the fitted models from these parameters 

be g1' and g2' respectively.   

(ii) For a three-component mixture, create anoth-

er data set by subtracting the model with the 

smaller area from the taylorgram data i.e. if ∑ g1' 

< ∑ g2', create g3'= taylorgram data – g1'. For a 

four component mixtures, create two data sets: 

g3'= taylorgram data – g1' and g4'= taylorgram 

data – g2'. 

(iii) For the three-component mixture, apply the 

method of Case 1A to data set g3' and solve for 

two more parameter pairs (A3', σ3') and (A4', σ4'). 

The seed parameters for the three-component fit 

are then: (A2', σ2'), (A3', σ3') and (A4', σ4').  Like-

wise, for the four-component mixture, apply the 

method of Case 1A to data sets g3' and g4' to ob-

tain four parameter pairs which would serve as 

seed parameters for the four-component fit. Note 

that there are other alternatives to deconvoluting 

the talyorgrams in this way at this stage which 

may be tailored accordingly to the type of size 

distribution expected.  

The method described may be adjusted accord-

ingly if one, two or three of the hydrodynamic 

radii are known a priori.  

 

Case 3: The taylorgram is a sum of two which 

differ in sign in which the positive taylorgram 

is dominant e.g. due to a mismatch of concen-

trations between the sample and run buffers.  

The effect of mismatches between the solute and 

run buffers on the resulting taylorgrams are illus-

trated in Figures 4 and 5.  In both cases the con-

centration of solute buffer is lower than that of 

the run buffer, which manifests as a negative con-

tribution to the concentration profile. In Figure 4, 

the hydrodynamic radius of the buffer molecules 
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is smaller than for the solute and vice versa in 

Figure 5. 

 

Figure 4. IgG in PBS with mismatched buffer 

phases (buffer molecules are smaller than the so-

lute molecules). 

 

 

 

 

Figure 5. Caffeine in BSA with mismatched 

buffer phases (buffer molecules are larger than 

the solute molecules). 

 

In this case, since a mixture of two unrelated 

components is being considered, the application 

of a two-component fit to the taylorgram is re-

quired so that the standard deviation of the sam-

ple can be extracted. As before, there are four 

unknown parameters, A1, A2, σ1 and σ2, and thus 

four equations are required to obtain initial esti-

mates. These may be obtained as described earli-

er but in cases where the solute is the dominant 

component in the mixture, a simpler method may 

be implemented. The method for the case illus-

trated in Figure 5 is described as follows. 

The first equation can be obtained from the value 

of the absorbance x at the dip in the trace in Fig. 

4 i.e. at t ~ tr. ? = �+ − ��		                   

(23) 

The second and third equations are obtained from 

the maximum absolute value y of the differential 

of the profile.  For a single component fit, this 

occurs at a time t’ given by 

�] = �� ^ �+	                   

(24) 

where the taylorgram has an absolute value y 

given by B = �+�+ exp	�−0.5�	                

(25) 

where the subscript 1 corresponds to the solute 

component. 

In Figure 6 is shown the second differential of the 

taylorgram. At the dip at the center of the taylor-

grams shown in Figure 4, the second differential 

is non-zero and positive as shown in Figure 6 

(whereas, it is negative for a single component 

trace). The value z at this time is given by: E = �+�+� − �����		                   

(26) 

 

Figure 6. Second differential of a taylorgram 

with mismatched buffers (buffer molecules are 

smaller than the solute molecules). 

 

Since both A1 and σ1 are exclusively determina-

ble from Equations 24 and 25, it is straightfor-

ward to obtain A2 and σ2 from Equations 23 and 

26 by direct substitution. Similar expressions can 

be obtained for the case where the hydrodynamic 

radius of the buffer is larger than for the solute. 

 

3. Experimental Section 

TDA measurements were undertaken with the 

Viscosizer 200 or Viscosizer TD instruments 

(Malvern Instruments Ltd., Worcestershire, UK) 

fitted with a standard uncoated capillary  (ID 75 

µm, OD 360 µm, Malvern Instruments Ltd., 

Worcestershire, UK) using a 214 nm wavelength 

filter. Delivery of narrow solute plugs was 

achieved by pressure-driven injection at 50 mbar 

for 12 s. To ensure accuracy and because of the 

increased signal strength at the first detection 

window, single-detection TDA at the first win-

dow will be used to compute the hydrodynamic 
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radii and relative proportions of the solutes in the 

mixtures. The decreased signal strength at the 

second detection window introduces errors due to 

the influence of baseline noise particularly on 

wide and low-amplitude taylorgrams.  

The two-, three- and four- component mixtures of 

solutes were prepared using the highest quality 

reagents (from Sigma Aldrich, Suffolk, UK un-

less otherwise stated) as follows: 

 

3.1. Two-component mixtures: To test Cases 1A 

and 1B, three different mixtures were prepared 

from samples of 0.25 mg/ml caffeine (Rh ~ 0.3 

nm
35

), 20mg/mL Bovine Serum Albumin (BSA, 

Rh ~ 3.8 nm
36, 37

), 20 mg/mL Myoglobin (Rh ~ 

2.1 nm
38

) and 20 mg/ml Immunoglobin G (IgG, 

Rh ~ 5.8 nm
39

) prepared in Phosphate Buffered 

Saline (PBS pH 7.4) in equal volumes. The indi-

vidual components were analyzed and the hydro-

dynamic radii were found to agree with the litera-

ture values. The mixtures comprised a) Caffeine 

and BSA, b) BSA and Myoglobin, c) Myoglobin 

and IgG.  Three replicates of each mixture were 

analyzed at a run pressure of about 100-140 mbar 

at 20
o
C.   

 

3.2. Three-component mixtures: To test Case 

1C and 2, a three-component mixture was pre-

pared from samples of 1 mg/mL caffeine and two 

Nanospheres
TM

 3000 Series Size Standards (Rh ~ 

30 nm and 100 nm; Fisher Scientific, Leicester-

shire, UK) dissolved in 0.01M NaCl in equal 

volumes. Three replicates of the mixture were 

analyzed at a run pressure of 36 mbar at 25
o
C. 

 

3.3. Four-component mixtures: To test case 1D 

and 2, a four-component mixture was prepared 

from samples of 1 mg/mL caffeine (Rh ~ 0.3 nm) 

and three Nanospheres
TM

 3000 Series Size 

Standards (Rh ~ 30 nm, 100 nm and 200 nm) dis-

solved in 0.01M NaCl in equal volumes. Three 

replicates of the mixture were analyzed at a run 

pressure of 18 mbar at 25
o
C.  

 

3.4. Samples with a mismatch between the so-

lute and run buffers: To test Case 3, it was nec-

essary to contrive a mismatch between the solute 

and run buffer.  Samples of 1 mg/mL and 2 

mg/mL Insulin (Rh ~ 2 nm, 20% (v/v) acetic acid, 

pH 1.9) were prepared in their respective buffer 

solutions and left exposed to air for 3-5 hours. 

The hydrodynamic radius of Insulin was deter-

mined a priori using the Viscosizer instrument. 

In both of these experiments, the buffer mole-

cules are smaller than the solute molecules. An-

other sample comprising 1 mg/mL caffeine (0.3 

nm) dissolved in a 5 mg/mL BSA/PBS solution 

was also prepared to illustrate the case where the 

buffer molecules are larger than the solute mole-

cules.  Three replicates of each sample were ana-

lyzed at a run pressure of 140 mbar at 20
o
C.  

 

3.5. Aggregated samples: Samples of 20 mg/mL 

BSA (Rh ~ 3.8 nm, PBS pH 7.4) and 3 mg/mL 

BSA (Rh ~ 5 nm, PBS/arginine) were heat-

stressed at 65
o
C to varying degrees to induce ag-

gregation. Mixtures of stressed and non-stressed 

samples were combined to generate samples with 

3, 4, 6, 9, 50, 75 and 100 % (v/v) aggregated 

samples. The hydrodynamic radii of unstressed 

BSA in the two different buffer phases were de-

termined a priori using the Viscosizer instrument. 

These are different due to conformational chang-

es of BSA in the different ionic environments. At 

least five replicates of each mixture was analyzed 

at a run pressure of 140 mbar at 20
o
C.  The two 

component model was applied to the data to ex-

tract the proportion of aggregated material in 

each sample.  

 

4. Results and Discussion 

4.1. Cases 1A and 1B: Two-component mix-

tures with unknown radii and where one of 

the radii is known a priori. 

Figures 7-9 show three examples of the fits ob-

tained to the two-component mixtures. The esti-

mated hydrodynamic radii from the fits are pre-

sented in Table 1 for Cases 1A (where both radii 

are unknown) and 1B (where one of the radii is 

known). Note that for Case 1B, the radius of each 

component has been obtained by fixing the other 

component of the mixture and vice versa. Also 

shown for Case 1A are the seed hydrodynamic 

radii which are the values of the radii obtained 

from the initial estimates before the fits are ap-

plied. As can be seen, for all three mixtures, the 

estimated hydrodynamic radii obtained are in 

reasonable agreement with the expected values.   
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Figure 7. Fits to taylorgrams from a mixture of 

caffeine and BSA (Grey: taylorgram, Solid: full 

fit, Dot-dashed: smaller component, Dashed: 

larger component) 

 

 

Figure 8. Fits to taylorgrams from a mixture of 

BSA and Myoglobin (Grey: taylorgram, Solid: 

full fit, Dot-dashed: smaller component, Dashed: 

larger component) 

 

 

Figure 9. Fits to taylorgrams from a mixture of 

Myoglobin and IgG (Grey: taylorgram, Solid: 

full fit, Dot-dashed: smaller component, Dashed: 

larger component) 

 

 

 

 

 

 

 

 

Table 1. Estimated hydrodynamic radii for two-

component mixtures. 

 

4.2. Case 1C: Three-component mixtures 

with the ratios of the radii known a priori. 

Figure 10 shows the fits to taylorgrams obtained 

from a three-component mixture and the results 

for the hydrodynamic radii are presented in Table 

3. These were obtained with a priori knowledge 

of the ratios of the hydrodynamic radii. Also 

shown in Table 3 are the seed values for the hy-

drodynamic radii obtained before the fits were 

applied. As can be seen, the estimated values for 

the hydrodynamic radii are in reasonable agree-

ment with the nominal values.  

 

Figure 10. Fits to taylorgrams from three-

component mixtures (Grey: taylorgram, Solid: 

full fit, Dot-dashed: Caffeine, Dashed: 30nm 

nanospheres, Dotted: 100nm nanospheres) 

 

 

 

 

Mix-

ture 

So-

lute 

Nom. 

Rh 

(nm) 

Seed Rh 

(nm) 

1A 

Est.  Rh 

(nm)  

1A 

Est. Rh 

(nm)  

1B 

Caff. 

+ 

BSA 

Caff. 0.3 
0.38 

+/-0.01 

0.340 

+/-0.002 

0.346 

+/- 0.001 

BSA 3.8 
3.8 

+/- 0.3 

3.62 

+/- 0.06 

3.44 

+/- 0.02 

BSA 

+ 

My-

og. 

BSA 3.8 
3.05 

+/-0.03 

3.65 

+/- 0.02 

3.76 

+/- 0.07 

Myog. 2.1 
1.79 

+/-0.06 

2.08 

+/- 0.02 

2.11 

+/-  0.11 

My-

og. + 

IgG 

Myog. 2.1 
2.3 

+/- 0.4 

2.08 

+/- 0.08 

2.07 

+/- 0.01 

IgG 5.8 
7 

+/- 6 

5.8 

+/- 0.5 

5.9 

+/- 0.1 
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Table 2. Estimated hydrodynamic radii for three-

component mixtures when the size ratios are 

known a priori. 

 

4.3. Case 1D: Four-component mixtures 

with the four radii known a priori. 

Figure 11 shows fits to taylorgrams obtained 

from the mixture of four components and the re-

sults for the areas beneath the taylorgrams are 

presented in Table 4. These were obtained with a 

priori knowledge of the four hydrodynamic radii. 

Also shown are the expected areas which were 

determined by analyzing each component inde-

pendently. The seed values obtained before the 

fits were applied are also presented. As can be 

seen, the estimated areas are in reasonable 

agreement with the expected values. 

  

Figure 11. Fits to taylorgrams from four-

component mixtures (Grey: taylorgram, Solid: 

full fit, Dot-dashed: Caffeine, Dashed: 30nm 

nanospheres, Dotted: 100nm (larger of the two 

profiles) and 200nm nanospheres) 

 

 

 

 

 

 

Table 3. Estimated taylorgram areas for four-

component mixtures with the radii known a pri-

ori. 

 

4.4. Case 2: Three- and four-component 

mixtures of solutes with unknown radii a pri-

ori. 

In Tables 4 and 5 are shown the results from the 

application of the fitting method for Case 2 

(where the radii are unknown a priori) to the 

three- and four-component mixtures respectively. 

Note that since the four-component mixtures 

which were run at a pressure of 18 mbar, the hy-

drodynamic radius expected for caffeine is ~ 0.5 

nm when Taylor’s solution to the dispersion 

equation is used. The correct value can be ob-

tained by using the Taylor-Aris solution which 

accounts for the additional contribution to the 

dispersion from longitudinal diffusion should be 

used.   

As can be seen, the estimated radii are in agree-

ment with the expected values. A closer look at 

the seed parameters reveals that while these were 

reasonably approximated for the three-

component mixture, this was only partially the 

case for the four-component mixture where three 

of the radii (caffeine, 30 nm and 200 nm nano-

spheres) and one area (caffeine) are reasonably 

approximated.  

As mentioned earlier, unlike for Cases 1A-1D, 

this is an approximate method for determining 

the seed parameters. However, its usefulness may 

be demonstrated in two ways. The first is that 

since the seeds are obtained directly from opera-

tions on the taylorgram data, they are physically 

feasible. This is because the initial seeds obtained 

this way already provide an approximate fit to the 

data although they may be inaccurate. The se-

cond benefit of this method is its potential ap-

plicability to taylorgrams with an arbitrary num-

Caffeine + 

30 nm + 

100 nm 

Nominal 

Rh  

(nm) 

Seed Rh 

(nm) 

Est. Rh 

(nm) 

Caffeine 0.3 
0.37 +/- 

0.02 
0.36 +/- 0.02 

30 nm nan-

ospheres 
30 37 +/- 3 27 +/- 2 

100 nm 

nanospheres 
100 125 +/- 16 102 +/- 6 

Caffeine + 

30 nm + 100 

nm 

Nominal 

Rh (nm) 

Seed Rh 

(nm) 

Est. Rh 

(nm) 

Caffeine 0.3 
0.427 +/- 

0.004 

0.35 +/- 

0.01 

30 nm 

nanospheres 
30 38.5 +/- 0.3 32.3 +/- 0.9 

100 nm 

nanospheres 
100 133 +/- 3 107 +/- 3 
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ber of components such as polydisperse samples. 

By successively applying the method described 

above to such taylorgrams, it may be possible to 

obtain a measure of the sample’s polydispersity 

from the range of seeds obtained for the parame-

ters. This is evident from seeds obtained for the 

four-component mixture where the seed radii 

span the range of the expected radii. The applica-

tion of this method to the quantification of poly-

dispersity will be the subject of future work. 

 

Table 4. Estimated hydrodynamic radii for three-

component mixtures with no a priori infor-

mation. 

 

 

 

Table 5. Estimated hydrodynamic radii and tay-

lorgram areas for four-component mixtures with 

no a priori information. 

 

4.5. Case 3: Solutes with a mismatch be-

tween the solute and run buffers 

Figures 12-14 show fits to three taylorgrams 

showing a mismatch between the sample buffer 

and run buffer phases. The values for the hydro-

dynamic radii obtained from the fits are present-

ed in Table 6. These are in reasonable agreement 

with the nominal values. Note that the radii of the 

buffer molecules are estimated from the standard 

deviations of the negative taylorgrams.   

 

 

Figure 12. Fits to IgG in PBS with a mismatch in 

the buffer phases (Grey: taylorgram, Solid: full 

fit, Dot-dashed: solute, Dashed: mismatched 

buffer) 

 

 

Figure 13. Fits to caffeine in BSA with a mis-

match in the buffer phases (Grey: taylorgram, 

Solid: full fit, Dot-dashed: solute, Dashed: mis-

matched buffer) 

 

 

Caffeine + 

30 nm + 100 

nm + 200 

nm 

Nominal 

Area 

(mAUs) 

Seed Area 

(mAUs) 

Est. Area 

(mAUs) 

Caffeine 4000 
3521 

+/- 75 

4627 

+/- 148 

30 nm 

nanospheres 
12000 

19836 +/- 

1058 

12982 

+/- 756 

100 nm 

nanospheres 
6500 

9202 

+/- 166 

6057 

+/-79 

200 nm 

nanospheres 
3500 

3063 

+/- 352 

3769 

+/- 535 

Caffeine 

+ 30 nm 

+ 100 nm 

+ 200 nm 

Nom. 

Area 

(mAUs) 

Seed 

Area 

(mAUs) 

Est. Ar-

ea 

(mAUs) 

Seed 

Rh 

(nm) 

Est. 

Rh 

(nm) 

Caffeine 

(~ 0.5 

nm) 

4000 
4947 

+/- 95 

4960 

+/- 92 

0.52 

+/- 

0.01 

0.51 

+/- 

0.01 

30 nm 

nano-

spheres 

12000 
8103 

+/- 111 

13032 +/- 

244 

27.4 

+/- 

0.4 

31 +/- 

0.3 

100 nm 

nano-

spheres 

6500 
7866 

+/- 386 

6853 

+/-800 

47.3 

+/- 

0.3 

99 +/- 

12 

200 nm 

nano-

spheres 

3500 
7342 

+/- 235 

3145 +/- 

965 

171 

+/- 2 

223 

+/- 16 
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Figure 14. Fits to Insulin in acetic acid with a 

mismatch in the buffer phases (Grey: taylorgram, 

Solid: full fit, Dot-dashed: solute, Dashed: mis-

matched buffer) 

 

 

 

 

Table 6. Estimated hydrodynamic radii from tay-

lorgrams with mismatched buffer phases. 

 

4.6. Aggregated samples 

Figures 15 and 16 show examples of two-

component fits to taylorgrams obtained from ag-

gregated BSA samples. It will be noted from the 

taylorgrams that the bulk of the aggregates have 

similar residence times to the monomer indicat-

ing that they are not too large in size. The esti-

mated levels of aggregation computed from the 

areas beneath the individual taylorgrams are 

compared to the expected values in Table 7 and 

can be seen to be in reasonable agreement. The 

slight discrepancies in the values obtained may 

be attributed to external factors such as additional 

aggregation occurring between the time the sam-

ples were prepared and when they were analyzed. 

 

Figure 15. Two-component fits to taylorgrams 

from a 6% aggregated BSA sample (Grey: tay-

lorgram, Solid: full fit, Dot-dashed: BSA mono-

mer, Dashed: BSA aggregates)  

 

 

 

 

 

Figure 16. Two-component fits to taylorgrams 

from a 50% aggregated BSA sample (Grey: tay-

lorgram, Solid: full fit, Dot-dashed: BSA mono-

mer, Dashed: BSA aggregates) 

 

Table 7. Estimated levels of aggregation for ag-

gregated BSA samples 

 

5. Conclusions 

In this work, a method has been described for the 

determination of the initial estimates of parame-

ters for the constituent taylorgrams of a multi-

component mixture. These initial estimates can 

then be used in a least-squares fitting algorithm 

to obtain optimum solutions for the constituent 

taylorgrams from which the hydrodynamic radii 

and relative proportions of the components may 

be calculated. The method was applied success-

fully to two-, three- and four-component mixtures 

as well as aggregated samples. These methods 

could feasibly be applied to the determination of 

the onset of and quantification of polydispersity 

and aggregation in a sample and this will be the 

focus of further work. 

Sample 

Nominal %  

aggregation 

Estimated %  

aggregation 

BSA in PBS 

 

 

 

3 3.5 +/- 0.2 

4 3.9 +/- 0.3 

6 6.8 +/- 0.4 

9 7.7 +/- 0.7 

BSA in Arginine 

 

 

50 57.0 +/- 0.3 

75 81.8 +/- 0.2 

100 97 +/- 6 Sample 
Solute and 

buffer 

Nominal 

Rh (nm) 

Estimated 

Rh (nm) 

IgG in PBS 

 

IgG 5.8 5.9 +/- 0.2 

PBS mis-

match  

0.21 +/- 

0.04 

Caffeine in 

BSA 

 

Caffeine 0.3 
0.339 +/- 

0.003 

BSA mis-

match 
3.8 

3.76 +/- 

0.03 

Insulin in 

acetic acid 

 

Insulin 2.1 
2.11 +/- 

0.03 

Acetic acid 

mismatch  

0.25 +/- 

0.01 
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