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Electrospinning of recycled PET to generate tough 
mesomorphic fibre membranes for smoke filtration 

I. N. Straina, Q. Wub, A. M. Pourrahimib, M. S. Hedenqvistb, R. T. Olssonb,*, and 
R. L. Anderssonb,* 

Abstract 
Tough fibrous membranes for smoke filtration have been developed from recycled polyethylene 
terephthalate (PET) bottles by solution electrospinning. The fibre thicknesses’ were controlled from 0.4 
to 4.3 μm by adjustment of the spinning conditions. The highest fibre strength and toughness were 
obtained for fibres with an average diameter of 1.0 μm, 62.5 MPa and 65.8 MJ/m3, respectively. The X-
ray diffraction (XRD) patterns of the fibres showed a skewed amorphous halo, whereas the differential 
scanning calorimetry (DSC) results revealed an apparent crystallinity of 6–8 % for the 0.4- and 1-μm 
fibres and 0.2% crystallinity for the 4.3-μm fibres. Heat shrinkage experiments were conducted by 
exposing the fibres to a temperature above their glass transition temperature (Tg). The test revealed a 
remarkable capability of the thinnest fibres to shrink by 50 %, which was in contrast to the 4.3-μm 
fibres, which displayed only 4 % shrinkage. These thinner fibres also showed a significantly higher 
glass transition temperature (+15 °C) than that of the 4.3-μm fibres. The results suggested an internal 
morphology with a high degree of molecular orientation in the amorphous segments along the 
thinner fibres, consistent with a constrained mesomorphic phase formed during their rapid 
solidification in the electric field. Air filtration was demonstrated with cigarette smoke as a model 
substance passed thru the fibre mats. The 0.4-μm fibres showed the most effective smoke filtration and 
a capacity to absorb 43x its own weight in smoke residuals, whereas the 1-μm fibres showed the best 
combination of filtration capacity (32x) and mechanical robustness. The use of recycled PET in the form 
of nanofibres is a novel way of turning waste into higher-value products. 

Introduction 

 Useful recycling of plastic polymer waste is a growing 
concern over the entire globe. In the United States in 2012, 
32 million tons of plastic waste were generated, amounting to 
12.7 % by weight of the total municipal solid waste,1 but about 
twice that if considering the volume2. Only 9 % of this plastic 
waste was recovered for recycling,1 ca. 30 % of which was 
related to the collection of used poly(ethylene terephthalate) 
(PET) bottles.3 These post-consumer PET bottles are nowadays 
highly valued in manufacturing since they are inexpensive 
compared to virgin PET, which would have an equivalent 
market price of ca. 150 million USD if no PET would be 
recycled in the USA.4 The current market for recycled PET 
ranges from engineering plastics, automobiles, packaged foods, 
containers, fleece fabric, and different kinds of film.5, 6 
However, virgin PET also has additional use in applications 
such as protective clothing, membranes, vascular grafts, tissue 
scaffolding, and filtration.6, 7 Thus, recycled PET could be an 
ideal cost-effective choice in a variety of applications.  
 Bottle-grade PET exists as a semi-crystalline thermoplastic 
with high impact and tensile strength, chemical resistance, and 
a reasonable thermal stability,8, 9 but since recycled PET has 
been in contact with a variety of substances and environments, 
applications in a biological setting are not suitable. This fact, in 
addition to the growing concerns on environmental air 
pollution,10 means that filtration is one of the most promising 
application for recycled ultrathin PET fibres. Nonwoven fabrics 

of PET could here play a momentous role in dust filtration 
because of their porous structure and low cost of manufacturing 
in combination with its unique mechanical properties.10 
Utilization of recycled PET bottles for the manufacture of 
profitable filtration products would help to offset the cost of 
recycling and encourage the collection of post-consumer PET 
bottles. The PET polyester is also particularly marketable for 
recycling since it is one of the most easily identifiable 
thermoplastics since almost all beverage bottles are made of 
PET.  
 An increasingly popular technique for the production of 
non-woven membranes is electrospinning, which is one of the 
most rapidly growing industrial polymer processing methods 
for the production of ultrathin fibres. Studies on the 
electrospinning of PET exist, but only one published study 
concerns the electrospinning of recycled PET,9 where 
electrospinning from melt was applied to prepare ca. 30 µm 
thick fibres. Polymer melt spinning is a useful technique to 
handle thermoplastics when traces of other plastics are possibly 
present as long as the polymers show melt characteristics that 
enable them to mix properly at a given process temperature. 
The drawback is the considerable amounts of heat (energy) 
required to process the material, and inferior mechanical 
properties with repeated heating cycles.11, 12 Another limitation 
of the electrospinning of polymer melts is the relatively high 
viscosity of the spun material, making it difficult to produce 
very thin uniform fibres.13 A possible alternative advantageous 
method would be to carry out the electrospinning of recycled 
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i.e. by weighing a known area of the fibre mat taken adjacent to 
the template on the collection drum. The tensile strength was 
taken as the highest stress supported during the test, the 
Young’s modulus was taken as the initial linear slope of the 
stress–strain curve and the toughness was calculated as the total 
area under the stress–strain curve. 

Determination of fibre size and morphology 

Using detailed scanning electron micrographs, 200 fibres were 
measured from each spun sample of aligned and unaligned 
fibres. The angular deviation of aligned fibres was calculated 
from a minimum of 50 fibres from each spun sample. For these 
measurements, a Hitachi S-4800 cold-field-emission scanning 
electron microscope (FE-SEM) was used in conjunction with a 
thin Pt/Pd 60/40 coating, (10 s at 80 mA) in a Cressington 
208HR high-resolution sputter. 
 The molecular draw ratio of each aligned fibre mat 
(20×20 mm2 cut-outs) was evaluated from their shrinkage upon 
heating to 150 °C, over a temperature-controlled aluminium 
surface. 

Infra-red Spectroscopy (IR) 

All IR spectroscopy measurements were performed on a 
Perkin-Elmer Spectrum 2000 using a 1 cm-1 scan step and a 
single reflection attenuated total reflectance stage (ATR) MKII 
Golden Gate unit. 

X-ray diffraction (XRD) 

The electrospun samples were prepared as thick sample discs to 
obtain the highest possible diffraction intensity, i.e. by 
compressing the fibres in a Specac circular dye (diameter 10 
mm) for 1 min and 100 kN at room temperature. X–ray 
diffractograms on samples were taken at room temperature 
using a PANalytical X’pert Pro MPD diffractometer with a Cu-
Kα source (wavelength 1.5418 Å) at a step size of 1 arcmin 
(2θ) and scan step time of 51 s. 

Differential scanning calorimetry (DSC) 

Thermograms of fibres were obtained with a temperature- and 
energy-calibrated Mettler–Toledo DSC1.  Each sample was 
weighed at 2.0 ± 0.1 mg, enclosed in a 100 mL standard 
aluminium crucible with one hole in the cover. The samples 
were heated from 30 °C to 300 °C at a rate of 10 °C·min-1 
under a nitrogen atmosphere at a gas flow rate of 50 L·min-1, 
and allowed to rest for 5 min before subsequent cooling at 
10 °C min-1. The degree of crystallinity (Xc,DSC) was calculated, 
under the assumption that the morphology of amorphous 
regions before cold crystallisation and after melting are the 
same, from the equation:22 

ܺ஼,஽ௌ஼ ൌ ൫∆ܪ௙ െ ௖൯ܪ∆ ௙ܪ∆
଴ൗ   (Eq. 1) 

Where ΔHf is the enthalpy of fusion, ΔHc is the enthalpy of cold 
crystallization, assessed directly from DSC thermograms, and 
ΔH°f (136 J·g-1) is the enthalpy of fusion of 100% crystalline 
PET.23 

Smoke Filtration 

To determine the smoke filtering properties of the fibre mats 
with different fibre diameters, the mats were evaluated by 
securing them over a glass tube (9 mm diameter) fitted within a 
tubular system for smoke transportation and testing (see 
Fig. 7c).  A cigarette (Marlboro Gold, Philip Morris 
International) with its filter removed was fitted into the other 
end of the glass tube at a distance of 25 mm from the fibre mat. 
The specific surface area of each filter was calculated from the 
measured average diameter (from SEM) of the fibres. IR-
spectroscopy was employed to determine what sort of 
components were absorbed, small amounts of smoke were used 
for this purpose, i.e. 2 mL of smoke was passed through each 
mat for each µg of fibre mat present, at a rate of ca. 100 mL·s-1. 
The filtration capacity was measured gravimetrically as the 
total mass uptake after exposure to an excess of cigarette smoke 
(1000 mg of tobacco for each mg of filter), a comparison to the 
commercial filter tip used in the original cigarette was made 
using the same proportions of tobacco to filter.  

Results and Discussion 

Morphology and composition of electrospun recycled PET-fibres 

Fig. 2a to c shows the result of increasing the concentration of 
PET in the solvent carrier. By adjusting the concentration, the 
average fibre diameter could be precisely controlled, while the 
fibre morphologies were almost unaffected and showed 
continuous long fibres with smooth surfaces. The insets in the 
micrographs show the size distribution of the fibres, obtained 
by measuring the diameters of at least 200 fibres for each 
sample. The average fibre diameters at these flow rates 
increased from 0.41 µm (± 0.12 µm, i.e. ± 30 %) at 10 wt%, to 
1.0 µm (± 0.19 µm, i.e. ± 19 %) at 15 wt%, to 4.3 µm 
(± 0.34 µm, i.e. ± 8 %) at 20 wt% PET. The relative standard 
deviation was largest for the thinner fibres and decreased with 
increasing fibre thickness, possibly due to the lower viscosity 
and high surface tension of the electrospun solutions for these 
samples, as previously reported.24 Fig. 2d shows the 
relationship between the fibre diameter and the PET 
concentration at different flow rates. A flow rate three times as 
high (at a given concentration) had only a marginal effect on 
the thickness of the fibres. For all the evaluated formulations 
and flow rates, the fibres with greatest uniformity were always 
prepared at the lowest spinnable flow rate (5 µL∙min-1 for 10 
and 15 wt% PET, 10 µL∙min-1 for 20 wt% PET),  
Fig. 2 a–c. For ease of reference, the above fibres are hereafter 
referred to by their approximate diameters: 0.4, 1.0 and 4.3 µm. 
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Table 2. Filtration capacity of the electrospun PET filter membranes 
compared to the original cigarette filter tip.  

Fibre 
diameter 

Specific 
surface area 

Rel. mass 
uptake  

Rel. mass uptake  
(after drying) 

Volatile 
fraction 

0.4 µm 7.07 m2/g 43.7 41.5 0.049 
1.0 µm 2.90 m2/g 32.9 30.7 0.067 
4.3 µm 0.67 m2/g 26.4 23.1 0.126 
Original 
filter tip 

0.10 m2/g 2.7 2.0 0.252 

A large excess of burnt cigarette smoke was passed through each fibre 
mat. Mass uptakes are relative to the initial fibre mat weight. The 
fraction of volatile components is relative to the total mass of all 
absorbed substances. 

The filtration capacities of the electrospun PET membranes 
were further evaluated by measuring the total mass uptake 
when a large excess of cigarette smoke was passed through 
each filter. The results verified that the thinner fibres (0.4 µm) 
contained the highest amount of absorbed smoke components 
(43.7 times its own weight, Table 2), the fibre mat weight-
increase was ca. 2 times higher than that seen for the 4.3 µm 
fibres (absorbed 26.4 times its own weight). Small amounts of 
volatile components were absorbed in all the filters (e.g. water), 
which revealed themselves when drying the membranes in 
vacuum for >3 h. The amount of evaporated volatile 
components in the thickest fibres (4.3 µm), was 12.6 wt% of 
the total absorbed mass, whereas the absorbed substances in the 
0.4 µm fibres contained only 4.9 wt% volatiles.  
 The original cellulose acetate cigarette filter tip absorbed 
only 2.7 times its own weight during the same treatment. In 
addition to the inferior filtration capacity, these much thicker 
fibres absorbed a larger portion of volatiles, 25.2 wt% of the 
absorbed matter. This can be interpreted as if the fibre mats 
with thick fibres and thus larger pores, had a much lower 
capability of trapping small solid/non-volatile particles. 

Conclusions 

Solution-electrospinning has been used to prepare the thinnest 
ever reported PET fibres obtained from recycled PET. The 
thermal (DSC) and the IR characteristics of the polymer were 
the same before and after electrospinning, neither showed any 
evidence of degradation in the electrospun fibres. The average 
fibre diameter was varied by over one order of magnitude (from 
0.4 µm to 4.3 µm) by adjusting the concentration of recycled 
PET in the electrospinning solutions. The uniformity of the 
fibres depended on the feed rate of the solutions, the most 
uniform fibres being formed at the slowest rates. A template 
transfer method (TTM) was applied to carry out 
micromechanical tensile testing on aligned fibre mats, and it 
was found that the strength, strain at break, and modulus 
increased as the fibre diameter decreased. This resulted in a 
large increase in toughness of the fibres, making them useful 
for filtration applications. The 1.0 µm thick PET fibres 
displayed high strength, a high modulus and high toughness 
(62.5 MPa, 1.39 GPa and 65.5 MJ·m-3). The improvement in 
the mechanical properties originated from the formation of a 
completely amorphous mesomorphic phase with highly 
oriented PET molecules, as a result of the extensive fibre 
stretching and the rapid solidification of the fibres during the 
spinning. The molecular draw ratio was greater than 2.2 for the 

thinnest fibres, which was higher than that in the original PET 
bottle. The fibre mats were evaluated as filtration devices for 
air filtration of condensing hydrocarbons and particulate matter. 
Tobacco smoke was chosen as a model substance as it contains 
thousands of different particulate and vapour phase substances. 
IR-analysis confirmed an increased absorption efficiency of 
hydrocarbons and alcohols as the fibre diameter decreased. 
Gravimetrical measurements also showed an increased filtration 
capacity (especially of non-volatile particles) with decreased 
fibre diameter. A filtration capacity of more than 43 times the 
filters own weight was seen for filters with an average fibre 
diameter of 0.4 µm, which is significantly higher than shown 
for the original cigarette filter tip. 
 The combination of the large-scale availability of recycled 
PET, the electrospinning-induced formation of a toughness-
enhancing internal morphology yielding ca. 30 times tougher 
fibre mats, and the high affinity of these PET fibre mats for air-
borne hydrocarbons, also open the way for the applied use of 
recycled PET in a range of industrial filters.  In the future we 
foresee that these recyclable electrospun non-woven filters 
develop into biodegradable materials that not only show 
specific absorption characteristics but also with a tailored 
lifespan for the intended application, e.g. materials based on 
bio-polyesters. 
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