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Abstract 18 

The appearance of fringes in the infrared spectroscopy of thin films seriously hinders interpretation of 19 

chemical bands because fringes change relative peak heights of chemical spectral bands. Thus, for the correct 20 

interpretation of chemical absorption bands, physical properties need to be separated from chemical 21 

characteristics. In the paper at hand we revisit the theory of the scattering of infrared radiation at thin 22 

absorbing films. While in general scattering and absorption are connected by a complex refractive index, we 23 

show that for the scattering of infrared radiation at thin biological films, fringes and chemical absorbance can 24 

in good approximation be treated as additive. We further introduce a model-based pre-processing technique 25 

for separating fringes from chemical absorbance by Extended Multiplicative Signal Correction (EMSC). The 26 

technique is validated by simulated and experimental FTIR spectra. It is further shown that EMSC, as 27 

opposed to other suggested filtering methods for removal of fringes, does not remove information related to 28 

chemical absorption. 29 

 30 

Key Words: FTIR spectroscopy, fringes, thin film scattering, zero-filling, EMSC  31 
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Introduction 32 

Thin film transmission measurements are a frequently used sampling technique in infrared 33 

spectroscopy of biological materials. Thin film transmission measurements are for example applied in the 34 

infrared spectroscopy of microorganisms1-5 and cells6, where dried thin films of microorganisms and cells are 35 

prepared on infrared-transparent sample holders. Infrared spectra are obtained by transmitting infrared 36 

radiation through the thin films and the infrared-transparent sample holders. Thin films of the solid matter of 37 

liquids, such as blood or milk samples, can be obtained by drying the samples to form thin films on sample 38 

holders.7, 8 Further, thin films are obtained when sections of tissues are placed on infrared transparent 39 

materials such as ZnSe or CaF2
9.  40 

The strongest non-chemical variations in the Fourier Transform Infrared (FTIR) spectroscopy of thin 41 

dried films are due to differences in the sample thicknesses of thin films or tissue sections. Since the 42 

penetration depth of infrared radiation into biological material is of the order of a few microns, thin films of 43 

typically 6-10 µm need to be prepared for infrared transmission spectroscopy. When samples with varying 44 

thicknesses are to be compared, the variation in sample thickness leads to variations in the effective optical 45 

path length, which can be effectively estimated and suppressed by EMSC10-12. Another non-chemical 46 

interference pattern that is frequently encountered in the FTIR spectroscopy of thin films are sinusoidal 47 

modulations in FTIR spectra called ‘fringes’13. The fringes usually result from reflections inside the sample 48 

or sample holder or from reflections between the sample holder and the sample. These reflections lead to 49 

additional interferences between the two infrared beams inside an FTIR spectrometer. In an interferometer, 50 

the main interference appears at the so-called Zero Path Difference (ZPD) position of the interferometer and 51 

is called center burst. Center bursts occur when the two mirrors of the FTIR spectrometer are at the ZPD 52 

position. The fringes create additional spikes (side bursts) which are usually located close to the central 53 

spike, the center burst. These spikes appear in the interferogram space and are transformed to the sinusoidal 54 

waves in the spectrum domain by means of a Fourier Transform (FT)13. They can seriously hinder 55 

interpretation of the chemical bands in FTIR spectroscopy because they change relative peak heights of 56 

chemical spectral bands.  57 

For the interpretation of chemical absorption bands, physical properties such as effective optical path 58 

length variations and fringes need to be separated from chemical characteristics. If the separation of physical 59 

and chemical information is omitted or done incompletely, physical characteristics might be misinterpreted 60 
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as biochemical information. The literature includes many different techniques for removing fringes. A 61 

commonly used approach is the so-called interferogram editing. Side bursts are removed from the 62 

interferogram via filling regions containing bursts with zeros or by applying straight line interpolation14, 15. 63 

However, interferogram editing has disadvantages. First, it is often difficult to locate the spikes in the 64 

interferogram without employing special procedures for identification of spikes and removing them. A more 65 

fundamental objection against zero-filling of regions containing spikes is a possible loss of spectral 66 

information. This is because each spike contains also relevant information, which is removed when the spike 67 

is zero-filled. Another approach for the removal of interference fringes was presented by Clark and 68 

Moffatt16. In their approach, fringes are fitted by the use of a sinusoidal function. A sinusoidal wave and a 69 

baseline are generated after manual determination of the required parameters and subsequently subtracted 70 

from the spectrum containing fringes. The disadvantages of this method are that parameters such as 71 

frequency and amplitude have to be estimated manually and that the algorithm is only applicable to regions 72 

of low absorptivity. The reason for the latter is that regions with strong absorptivity lead to a bias in the 73 

estimation of the fitting parameters. Further, it has been proposed to use a modified background 74 

interferogram to cancel fringes in the transmission spectrum17. According to this technique a synthetic 75 

background interferogram is created, which contains the same fringes as the recorded sample spectrum. It 76 

can be reached via editing the sample interferogram and replacing it with zeros except at side burst and 77 

center burst positions. This modified interferogram is then transformed into a background spectrum by FT. 78 

By subtraction of this background spectrum, a fringes-free transmittance spectrum is obtained. As for the 79 

zero-filling, the disadvantage of this approach is that relevant information is removed, since spectral 80 

information at the bottom of the side and center burst spikes is eliminated by subtracting the background 81 

spectrum based on the fringes. Faggin and Hines18 suggested a method for handling interference fringes 82 

using a combination of digital filtering by the Savitzky-Golay algorithm19 and a boxcar function in 83 

combination with Fourier analysis. After application of the Savitzky-Golay algorithm, spectral features are 84 

expected to show sharper features than the fringes and are separated by using a boxcar function. In a second 85 

step, further cleaning of the spectrum is performed by visually identifying regions of Fourier-transformed 86 

center and side bursts in the spectrum and by filling these regions with zeros. The drawback of this method is 87 

that, as for previously discussed methods, useful information is suppressed both by the filtering and by the 88 

zero filling. 89 
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Other techniques utilize the fact that fringes have much lower frequencies than the recorded spectra 90 

and use filtering techniques either in the spectral domain or in the Fourier domain. For example, series 91 

expansion in the spectral domain20, or filtering in the Fourier (frequency) domain21 has been employed to 92 

remove low frequency terms. While filtering in the Fourier domain has again the drawback that useful 93 

information is very likely to be removed, series expansion in the spectral domain suffers from the same 94 

insufficiency, namely that chemical information is removed together with the low frequency fringes. 95 

Also instrumental techniques for removing fringes have been applied22, 23. In this approach, the 96 

sample is rotated to achieve maximum transmittance (minimum reflectance) for parallel polarization, which 97 

is achieved when the angle of incidence is the so-called Brewster angle24. The infrared beam is then 98 

polarized parallel to the plane of incidence. Under these conditions there is no reflection and, hence, no 99 

interference. However, the Brewster angle is absorptivity-dependent and will provide an accurate spectrum 100 

only in regions of low absorptivity16.  101 

While all above discussed approaches are based on filtering, Extended Multiplicative Signal 102 

Correction (EMSC) is a so-called model-based approach allowing the separation of different effects in 103 

infrared spectroscopy of biological materials10. EMSC allows quantifying different types of physical and 104 

chemical variations in spectra. It is thus enabling the scientists to study the different effects separately. It has 105 

been successfully used for removing variations due to the effective optical path length, scattering effects due 106 

to Mie scattering in single cell scattering25 and variations due to water in thin films26.  107 

In the paper at hand, we introduce a technique for reducing fringes by EMSC. We will show how 108 

spectral information in spectra containing fringes is preserved by EMSC. In the Methods section, we 109 

introduce EMSC for fringe removal. To this purpose, we review exact electromagnetic calculations for the 110 

description of scattering of electromagnetic radiation at a thin film. In order to treat scattering and absorption 111 

at a thin film exactly, we will consider a non-constant and complex refractive index when establishing the 112 

electromagnetic theory. In the Results section, the method based on EMSC is tested with simulated and 113 

experimental FTIR spectra. 114 

 115 

Basic definitions 116 

In Fig. 1 the transmission measurement of a thin film sample is illustrated. We denote the infrared 117 

radiation intensity that is incident on the film as ��. When incident radiation  at a given wavenumber hits the 118 
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film, it may be scattered as indicated by the red arrow to the left of the film, absorbed by an absorbing 119 

radiation sink as illustrated by the red area or transmitted as depicted by the red arrow to the right of the film. 120 

Therefore, the transmitted intensity is in general attenuated by both scattering and absorption. We denote the 121 

transmitted intensity by I and the scattered intensity by ����. Experimentally the transmitted intensity I is 122 

obtained by confining a measurement area by the aperture G in front of the detector (see Fig. 1). The incident 123 

intensity or background intensity �� is obtained by removing the thin film out of the infrared radiation path. 124 

The transmittance T is further defined as the ratio of the incident intensity �� and the transmitted intensity I  125 

� = ��	 (1) 126 

Finally the absorbance A is calculated as 127 


 = −log�����. (2) 128 

When the incident radiation is attenuated by scattering and absorption, the transmittance T is reduced at the 129 

respective wavenumbers. When analysing the obtained FTIR spectra, the scientist is at a loss to decide if the 130 

attenuation is due to scattering or absorption. 131 

For the general case of scattering at a finite-size, arbitrarily shaped object, the quantity ���� is a 132 

vector, generally pointing in the radial direction and therefore not directly useful for studies concerned with 133 

the forward direction. In the case of the film however, ���� is naturally (anti-)parallel to the forward direction 134 

and therefore a useful quantity in the thin-film scattering case. The thicknesses of thin films, as denoted by l, 135 

are typically of the order of a few microns, since thicker films are opaque for infrared radiation . The 136 

absorbed intensity ���� has to be carefully distinguished from the scattered intensity ����. While the scattered 137 

radiation is emitted instantaneously, the absorbed radiation is converted into internal energy of the film. This 138 

internal energy might be conveyed by conduction to the environment, e.g. to the sample holder or to the air. 139 

It is true that the internal energy might also be re-emitted as thermal radiation with the same or a different 140 

frequency, described by Planck’s radiation law 27. Still, it cannot be counted as scattered radiation, because 141 

the re-emission happens with a time delay.  142 

The scattering of infrared radiation at a thin film can be described exactly, even when the film is 143 

absorbing, i.e. not transparent in the infrared region of the radiation. Theoretical derivations can be found in 144 

appendix A. It can be shown that for non-magnetic materials the scattered intensity ���� can be written as  145 
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���� = ��|�|�, (3) 146 

where r is the reflection amplitude given by 147 

� = ������� �������� !"���#���� �������� !"�#�$�� %&������ !"�. (4) 148 

For the transmitted intensity � we obtain  149 

� = ��|(|�, (5) 150 

where t is the transmission amplitude given by 151 

( = �$��*+�,-.!/��#���� �������� !"�#�$�� %&������ !"�. (6) 152 

Here 0� is the refractive index, l is the thickness of the film and 12 is the wavenumber of the incident radiation. 153 

The chemical absorption is taken into account by the imaginary part of 0�. Via Eqs. 1, 2, 5 and 6 the 154 

transmittance T and the absorbance A can be calculated. Contrary to the ideal conditions in our model, the 155 

front and back surface of the tissue sections are usually rough and not ideally parallel. Still, fringes are often 156 

observed in FTIR spectroscopy of biological materials. Other parameters such as the beam convergence and 157 

polarisation of the radiation may also influence the fringes pattern28. 158 

When we consider biological thin films the refractive index is a complex function. The complex 159 

refractive index is defined in the following way: 0��32� = 0�32� + 50′�32�, where 0�32� is the real part of the 160 

refractive index depicting the refractive properties of the material. The 0′�32� function is the imaginary part 161 

of the refractive index and describes the absorptive properties of the material. The real and the imaginary 162 

parts of the complex refractive index 0� automatically fulfil the Kramers-Kronig relation 163 

0�12� = 0� + �� 67 �∙�′������ !� 9:∞� , (7) 164 

where the symbol P denotes the Cauchy principal value of the integral. In general we cannot assume a 165 

constant and real refractive index. When chemical absorption bands are present, as in the infrared 166 

spectroscopy of biological materials, the refractive index 0�, which enters into Eqs. 4 and 6, has a non-zero 167 

imaginary part and both, the real and imaginary parts, depend on the wavenumber. The imaginary part of the 168 

refractive index has the shape of an absorption band. In the case of a thin film, and neglecting the scattering, 169 

the absorbance A is related to the imaginary part of the refractive index (see Eq.A21). The 0′�32� can be 170 

calculated in the following way  171 
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0; = <∙=�����>�" ! . (8) 172 

 173 

Method 174 

Extended Multiplicative Signal Correction (EMSC) 175 

Extended multiplicative signal correction is a model-based pre-processing technique providing the 176 

possibility to separate physical effects and chemical information in infrared spectra and to investigate these 177 

separately. The main idea of EMSC is that in the first pre-processing step, every spectrum is represented with 178 

respect to a reference spectrum ?�12� 10. For the correction of fringes we suggest to extend the EMSC model 179 

by sinusoidal terms according to 180 


�12� = @ + A ∙ ?�12� + 9� ∙ cos�D12� + 9� ∙ sin�D12� + G ∙ 12 + H�12� (9) 181 

where A	is the fitting parameter corresponding to ?�12�, describing the multiplicative variation of the sample 182 

spectrum with respect to the reference spectrum ?�12�. The parameter @ in Eq. 9 describes constant baseline 183 

variations. The term H�12� accounts for random measured noise and unmodeled spectral structures. The terms 184 

9� ∙ cos�D12� and 9� ∙ sin�D12� describe periodic baseline effects due to fringes, where 2K/D corresponds to one 185 

period in the wavenumber domain. The term G ∙ 12	 describes linear effects.  In order to account for the 186 

unknown phase of the fringes, it is essential to keep both terms 9� ∙ cos�D12� and 9� ∙ sin�D12�. The EMSC 187 

model in Eq. 9, may be further extended by a quadratic term when quadratic effects are present in the 188 

spectra10. We will in the course of the paper show that the extension by the sinusoidal terms is justified and 189 

in good agreement with the rigorous theory provided in the previous section. 190 

An important comment concerns the reference spectrum ?�12� as part of the EMSC model. Infrared 191 

spectra of biological materials have a very typical shape with visually not too strong shape variations when 192 

comparing samples of similar origin. For example, when comparing spectra of different microbial thin 193 

films5, only tiny, but very reproducible differences are due to chemical differences. In fact, the major visual 194 

differences are due to variations in the effective optical path lengths and other physical differences. This 195 

justifies the model shown in Eq. 9. In this respect, the term related to the reference spectrum in Eq. 9, is 196 

contributing as a stabilizing part in the estimation of the fitting parameters. Chemical variations correspond 197 

to slight variations around the reference spectrum and are contained in the un-modelled residual	H�12�. The 198 

reference spectrum assures that the parameters in the other terms in Eq. 9 are not, or only to a very small 199 

degree, biased by chemical absorption bands.  200 
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While the absorbance A in Eq. 9 is written as a function of the wavenumber	12, a measured spectrum 201 

is digitalized and available for discrete values of wavenumbers 12M. Denoting the vector related to the 202 

measured and digitalized absorbance spectrum by 203 

N =
O
PQ

�121�
�122�..
�12S�T

UV, (10) 204 

defining the matrix of model spectra by 205 

W =
O
PP
Q
1 ?�121� cos�D121� sin�D121� 1211 ?�122� cos�D122� sin�D122� 122. . . . .. . . . .. . . . .1 ?�12X� cos�D12X� sin�D12X� 12XT

UU
V
, (11) 206 

and collecting the fitting parameters in Eq. 9 into one vector 207 

Y =
O
PQ
@A9�9�G T
UV, (12) 208 

we can write Eq. 9 as a matrix equation N = WY+ Z	. Here we have used the convention commonly used in 209 

chemometrics, that vectors are denoted by bold, lower case letters and matrices by bold, upper case letters. 210 

The frequency 12� = 2K/D and consequently D are determined by Fourier transform. When the period in the 211 

Fourier domain 12� = 2K/D is known, the parameter vector Y can be found by least squares regression of 212 

each the spectrum vector N onto W. After the vector of unknown parameters Y has been estimated, the 213 

corrected spectra can be calculated according to 214 


�[\\�12� = <� !����]^∙%&��D∙ !��]�∙����D∙ !��*∙ !� . (13) 215 

In order to determine the period in the Fourier domain 12� = 2K/D we compute the Discrete Fourier 216 

Transform (DFT) 
_�S� of the sampled signal according to 217 


_�SΔD� = ∑ 
�12�� ∙ exp	e−5 2K0Sf gf−10=0 ,	 (14) 218 

where N is the number of sampling points, S = 0…f − 1.  219 

Each 
_�SΔD� is a complex number that encodes the amplitude of a sinusoidal component of the 220 

function	
�12��. Its amplitude is calculated according to 221 
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j
k�SΔD�j = lmnG�
k�SΔD��o� + m�?�
k�SΔD��o�.   (15) 222 

The frequencies in the Fourier domain are separated by a step 223 

ΔD = ��p∙∆ !, (16) 224 

where N is the number of sampling points and ∆12 is the wavenumber step. 225 

For calculating the Inverse Discrete Fourier Transform (IDFT) we used 226 


�12�� = 1f∑ 
_�SΔD� ∙ exp	e5 2K0Sf gf−1S=0 .	 (17) 227 

 228 

Materials and FTIR spectroscopy 229 

For FTIR spectroscopy samples from beef muscle (longissimus dorsi) were embedded in an optical 230 

cutting temperature (OCT) compound (Tissue-Trek, Electron Microscopy Sciences, Hatfield, PA), and snap-231 

frozen in liquid N2. Samples were cryo-sectioned with 10 µm thickness, and subsequently thaw-mounted on 232 

infrared transparent ZnSe slides. Spectra were acquired with IR Scope II connected to an Equinox 55 FTIR 233 

spectrometer (Bruker Optik GmbH, Ettlingen, Germany), equipped with a liquid nitrogen-cooled mercury 234 

cadmium telluride (MCT) detector. IR spectra were acquired from single myofibers in transmission mode in 235 

the range from 6000 cm-1 to 800 cm-1. The details of the sample preparation and the spectral acquisition are 236 

described elsewhere29.  237 

 238 

Results and discussion 239 

In Fig. 2a an absorbance spectrum of a beef muscle tissue section is shown. The spectrum contains 240 

mainly pure chemical absorbance bands and is nearly scatter free. Only slight baseline variations are visible. 241 

In order to test the EMSC model in Eq. 9 for estimating and removing fringes, we simulated spectra 242 

containing fringes. For the case that no absorption bands are present, fringes can be easily simulated with the 243 

help of Eqs. 1, 2, 5 and 6. The result is shown in Fig. 2b, where for the calculation of the transmittance T a 244 

real refractive index of	0�	 = 	0� = 1.33 and a film thickness of s = 4.3	μ? were used. Since according to 245 

Eq. A13 only |(|� enters into the computation of the absorptivity A, the periodicity of A is immediately 246 

obvious from Eq. 6. Accordingly, the fringes in Fig. 2b are visibly periodic. However, what is not obvious 247 

from Eq. 6 is that, as stated in Eq. 9, the periodicity may be represented by simple sine and cosine functions. 248 
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This is motivated in Appendix B, where we show that replacing the exact electromagnetic result for the 249 

absorbance A (see Eqs. 1, 2, 5 and 6) by simple sinusoidal functions in the EMSC model (see Eq. 9) is 250 

justified and results in only a very small error. 251 

Another approximation, which is frequently employed, concerns the treatment of scattering and 252 

absorption as additive in the absorbance spectrum. By simply adding the simulated fringes (see Fig. 2b) to 253 

the measured absorbance spectrum (see Fig. 2a), an approximated absorbance spectrum with fringes can be 254 

obtained. The result is shown in Fig. 2c. We refer to this spectrum as the absorbance spectrum with additive 255 

fringes. It is important to note that the fringes contained in the spectrum in Fig. 2c are obtained according to 256 

Eqs. 1, 2, 5 and 6 employing a constant refractive index. This means that the periodicity of the fringes is 257 

exact and not an approximation. In the absorbance spectrum with additive fringes in Fig. 2c, fringes are 258 

clearly visible in regions without chemical absorption. Their effect on other regions is also obvious, such as 259 

the region between 1500 cm-1 and 1000 cm-1, where a maximum in the fringes spectrum causes a rise of the 260 

baseline.  261 

As biological materials absorb infrared radiation, in general, the imaginary part of the refractive 262 

index is different from zero and has the shape of an absorption band. Starting from a practically scatter-free 263 

thin-film absorbance spectrum (see Fig. 2a), the imaginary part 0′ of the complex refractive index was 264 

calculated from the absorbance spectrum 
 according to Eq. 8. After 0′ was determined, the Kramers-Kronig 265 

relation (Eq. 7) was used to calculate the real part 0 of the refractive index. With 0′ and	0 at hand, the 266 

complex refractive index was determined for the whole wavenumber region and Eqs. 1, 2, 5 and 6 were used 267 

for the calculation of an absorbance spectrum simulating the scattering and absorption of infrared radiation at 268 

a perfect thin film (with equidistant surfaces). We refer to this spectrum as the absorbance spectrum with 269 

dispersive fringes, since a complex refractive index accounting for scattering and absorption was used as 270 

input for the exact electromagnetic theory according to Eqs. 1, 2, 5 and 6. As film thickness and constant 271 

refractive index, s = 4.3	μ? and 0� = 1.33 were used, respectively. The exact absorbance spectrum with 272 

fringes is shown in Fig. 3 (in red) together with the absorbance spectrum with additive fringes shown in 273 

Fig. 2c, which was obtained by treating scattering and absorption as additive. In addition, the difference 274 

spectrum between the exact spectrum and the approximated spectrum is shown in black. It can be seen that 275 

the agreement between the exact and the approximated spectrum is good. Still there are differences visible, 276 

especially in regions with high absorbance. These differences are due to dispersion generated by absorption. 277 
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Each absorption band results in a non-zero imaginary part of the refractive index and generates additional 278 

fluctuations in the real part of the refractive index according to the Kramers-Kronig relation in Eq. 7. These 279 

refractive index fluctuations generate the variations shown in the black curve in Fig. 3. It is obvious that the 280 

dispersive effect of the absorption bands is much smaller for fringes compared with what is observed in Mie 281 

scattering30. Since the dispersive effect due to absorption is small for the scattering of infrared radiation at 282 

thin biological films, the signatures of multibeam interference, scattering and absorption in fringes spectra 283 

are commonly considered as additive contributions. The EMSC model, which treats fringes and absorption 284 

as additive effects in Eq. 9, and all correction models discussed in the introduction of this paper, are justified 285 

within this approximation. 286 

In order to separate fringes from pure absorbance, the parameters of Eq. 9 need to be estimated. This 287 

is accomplished in three steps. First, the frequency in the wavenumber domain D is estimated in the Fourier 288 

domain in order to establish the EMSC model of Eq. 9. Then, the linear parameters in Eq. 9 are estimated by 289 

regressing the EMSC model spectra onto the spectrum with fringes. Finally, fringes are separated from the 290 

pure absorbance spectrum according to Eq. 13. All three steps will be illustrated in the following sections by 291 

simulated and actual experimental data.  292 

 293 

EMSC correction of a simulated fringes spectrum 294 

In order to estimate the period of the fringes in the wavenumber domain, we considered the Fourier 295 

transform (FT) (Eqs. 14-17) of the spectra shown in Fig. 2. The Fourier transforms of the spectra of 296 

Figs. 2a, b and c are shown in Figs. 4a, b and c, respectively. While the Fourier transforms of the spectra in 297 

Figs. 2a and 2c show non-zero amplitudes for a large range of frequencies (see Figs. 4a and 4c), the Fourier 298 

transform of the pure fringes spectrum of Fig. 2b, which is shown in Fig. 4b, shows only one distinct 299 

amplitude surrounded by a low magnitudes ringing effect at frequency	D ≈ 0.007. The low amplitudes are 300 

due to a finite signal. This frequency obviously corresponds to the frequency of the fringes shown in Fig. 2b. 301 

Since fringes shown in Fig. 2b are present in the approximate absorbance spectrum of Fig. 2c, we expect that 302 

the amplitude of the frequency D ≈ 0.007 in Fig. 4c is elevated compared to Fig. 4a. Although a slight 303 

elevation of the amplitude of the frequency D ≈ 0.007 can be seen in Fig. 4c, there are several other 304 

frequencies in Fig. 4c with higher amplitudes. Thus, the Fourier transform in Fig. 4c cannot be used for the 305 

identification of the frequency of the fringes. It stands therefore to reason that the Fourier transform of the 306 
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region from 6000 cm-1 to 3800 cm-1 of the approximate absorbance spectrum of Fig. 2c (red region) could 307 

reveal the frequency of the fringes. The Fourier transform of the region from 6000 cm-1 to 3800 cm-1 of the 308 

approximate absorbance spectrum of Fig. 2c (red region) is shown Fig. 4d. Since the region from 6000 cm-1 309 

to 3800 cm-1 of the approximate absorbance spectrum of Fig. 2c does not show any absorption bands we may 310 

have expected that we obtain one single frequency which is related to the frequency of the fringes as in 311 

Fig. 4b. Yet, this is not the case. While most of the frequencies now show zero amplitudes in Fig. 4d, there 312 

are still more than one frequency with high amplitudes. The cause for this discrepancy is the so-called 313 

leakage effect31-33. The leakage effect appears, when the signal frequency coincides with the sample 314 

frequency. It results in a more complex Fourier spectrum with several non-zero frequencies, instead of a 315 

spectrum showing only one distinct peak. The FT algorithm assumes a periodic extension of the analyzed 316 

fragment of the signal. If the recording segment has an integer number of cycles, as in Fig. 2b, then a 317 

periodically extended signal is a continuous sinusoidal function and its amplitude spectrum contains only one 318 

non-zero frequency. If the number of cycles in the recorded segment is not integer as in Fig. 2c (in red), then 319 

the periodically extended signal is a discontinuous sinusoidal function and the spectral leakage effect occurs. 320 

Therefore, we obtain a range of frequencies when applying the Fourier transform to the truncated region 321 

(red) of Fig. 2c. 322 

In addition, in Fig. 4d, a picket-fence effect31-33 can be observed. In Fig. 4d we note that the expected 323 

frequency for the fringes (D = 0.007) is located between two neighboring peaks at D = 0.0057	 and 324 

D = 0.0086. In order to overcome the picket-fence effect we change the number of points N in the recorded 325 

signal segment by adding zeros (zero-filling process) at the end of the signal before the FT is applied. This 326 

changes the locations of the FT spectral lines and reduces the interval between them. Following this 327 

approach, we increase the resolution in the frequency domain and can thus determine the frequency of the 328 

fringes with high accuracy. As a rule of thumb, the number of zeros should always be at least double the 329 

original number of signal samplings. Therefore, one should at least choose a zero-filling factor (ZFF) of two. 330 

Zero-filling increases the number of spectral lines simply by interpolation and increases the resolution in 331 

reciprocal space. After zero-filling we were able to estimate the period of the fringes in the simulated fringes 332 

spectrum. We observed new spectral lines (see Fig. 4e), which were hidden in Fig. 4d. The frequency 333 

D = 0.0071578 has the largest amplitude and is close to the exact value D = 0.00725	(see Fig. 4b) for the 334 

pure fringes spectrum. We can therefore consider the frequency at D = 0.00716 as the fringes amplitude. In 335 
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a pre-processing algorithm the fringes frequency can thus be identified as the maximum frequency in the FT 336 

(with zero-filling) of the region 6000 cm-1 to 3800 cm-1. 337 

With the fringes frequency at hand we can now set up the EMSC model according to Eq. 9, estimate 338 

EMSC parameters and correct the absorbance spectrum with additive fringes (blue spectrum in Fig. 3) 339 

according to Eq. 13. As a reference spectrum, the spectrum shown in Fig. 2a was used. The result of the 340 

EMSC correction is shown as the orange spectrum in Fig. 5, together with the absorbance spectrum with 341 

additive fringes (green) and the pure absorbance spectrum (in blue). The black spectrum in Fig. 5 is obtained 342 

by filtering. Filtering is done by setting the amplitude at the frequency D = 0.007245	 in the Fourier 343 

transform of Fig. 4c to zero (zero-filling) and by calculating the filtered absorbance spectrum by inverse 344 

Fourier transform according to Eq. 17. The aliasing effect due to zero-filling is clearly visible. Although 345 

filtering reduces fringes slightly in the region that is commonly considered, i.e. 4000 cm-1 to 800 cm-1, large 346 

aliasing effects are introduced in regions with absorption. This shows that filtering changes the chemical 347 

absorption bands and has to be applied with care. Surprisingly, the EMSC model, treating fringes as 348 

sinusoidal and non-dispersive, works very well for correcting fringes, which were simulated according to 349 

rigorous theory, i.e. taking into account the dispersive effect of absorption bands and employing the exact 350 

formula for fringes in Eq. 6.  351 

As an algorithm for EMSC correction of fringes we suggest therefore to determine the fringes 352 

frequency in the region from 6000 cm-1 to 3800 cm-1, which is free from chemical absorption. For an 353 

accurate identification of the fringes frequency, zero-filling is applied as described above. The fact that for 354 

the determination of the frequency the region 6000 cm-1 to 3800 cm-1 is required, is not a limitation, since 355 

spectra can be obtained in this region by most commercially available FTIR spectrometers. When the 356 

frequency is determined, the EMSC model can be established according to Eq. 9 and the spectrum can be 357 

subsequently corrected according to Eq. 13.  358 

Finally we consider an experimentally obtained FTIR spectrum with fringes. The spectrum is, as the 359 

pure absorbance spectrum shown in Fig. 2a, obtained from meat tissue sections and shown in Fig. 6a (green 360 

spectrum). The Fourier transform of this green spectrum is shown in Fig. 6b. In order to remove fringes we 361 

calculated the Fourier transform of the region from 6000 cm-1 to 3800 cm-1 of the green spectrum in Fig. 6a. 362 

To reduce the leakage effect (Fig.6c) we employed zero-filling before the Fourier transform. The obtained 363 

Fourier transform is shown in Fig. 6d. As fringes frequency, we obtained	D = 0.00636. It was not possible 364 
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to identify this frequency component in Fig. 6b. This value was used in the EMSC model (Eq. 9) and fringes 365 

were corrected by Eq. 13 resulting in the blue spectrum in Fig. 6a. As reference spectrum we used the pure 366 

absorbance spectrum shown in Fig. 2a. A perfect agreement between the corrected spectrum (blue) and the 367 

reference spectrum (red) is not expected, since both spectra originate from different samples and thus 368 

chemical differences are expected to be present. However, we see that the measured spectrum with fringes 369 

was successfully corrected, since the sinusoidal oscillations are completely removed. The slight remaining 370 

oscillations in the region 6000cm-1 to 3800 cm-1 in the corrected spectrum may be due to non-parallel 371 

interfaces and beam convergence. 372 

Conclusions 373 

In this paper we have presented an EMSC-based approach for correction of fringes in FTIR 374 

spectroscopy. We further showed that fringes exhibit dispersive effects as observed in Mie scattering, but 375 

within a good approximation they can be considered as non-dispersive and sinusoidal. We further compared 376 

our EMSC correction results after removal of fringes with filtering. The comparison shows that filtering 377 

introduces aliasing and leads to a loss of chemical information. We showed that it is not possible to remove 378 

one frequency amplitude completely in the Fourier transform without any loss of information, since each 379 

frequency component in the Fourier domain contains relevant chemical information. We have further 380 

demonstrated that frequencies can only approximately be identified in the Fourier domain. This is due to the 381 

leakage and picket-fence effects. In order to reduce these two effects, we used zero-filling. For the 382 

experimental spectra considered in this paper the identification of one frequency was sufficient for the 383 

correction of the fringes. In cases where more than one frequency is needed for the correction of fringes 384 

using an EMSC model, this can easily be achieved by following the same approach outlined in this paper. 385 
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Figures 391 

Figure 1 392 

The evolution of a plane wave with intensity I0 at a thin film. Part of the plane wave is reflected backwards 393 

with intensity Isca, part of it is transmitted with intensity I. The absorption of infrared radiation by the thin 394 

film is indicated by the red area denoting a radiation sink. 395 

Figure 2 396 

a) Infrared absorbance spectrum of a meat tissue section. 397 

b) Periodic fringes obtained by the exact model for fringes with a constant real refractive index 0�=1.33. The 398 

fringes are considered for the spectral range from 6000 cm-1 to 800 cm-1. As thin film thickness we used 399 

l=4.3µm. 400 

c) Approximated absorbance spectrum with fringes constructed as the sum of the pure chemical absorbance 401 

spectrum of a meat tissue section (Fig. 2a) and periodic fringes (Fig. 2b).  402 

Figure 3 403 

Absorbance spectrum with additive fringes in blue. The absorbance spectrum with dispersive fringes 404 

obtained by using a complex index of refraction and exact model for fringes (Eqs. 1, 2, 5 and 6) in red. The 405 

imaginary part of the refractive index was obtained by using Eq. 8. The real part of the refractive index was 406 

calculated via the Kramers-Kronig transform Eq. 7. Their deviation is shown in black. 407 

Figure 4 408 

Representation of spectra in the Fourier domain. 409 

a) FT of the pure absorbance spectrum of Fig. 2a; 410 

b) FT of the exact model for fringes spectrum of Fig. 2b; 411 

c) FT of absorbance spectrum with additive fringes of Fig. 2c; 412 

d) FT of absorbance spectrum with additive fringes, using only the region between 6000 cm-1 to 3800 cm-1 413 

of Fig. 2c in red; 414 

e) FT of the absorbance spectrum with additive fringes, using only the region between 6000 cm-1 and 415 

3800 cm-1 of Fig. 2c in red after zero-filling; 416 

f) Filtering in the Fourier domain of the spectrum of Fig. 2c. 417 

Figure 5 418 

The simulated absorbance spectrum with additive fringes (in green, constant real refractive index 0�=1.33, 419 

thin film thickness l=4.3µm) was corrected by EMSC resulting in the orange spectrum. The result is shown 420 

together with the pure absorbance spectrum of Fig. 2a in blue. We used it as a reference spectrum. For 421 

comparison we also show a correction obtained by filtering the estimated frequency in the Fourier domain 422 

(in black). 423 

Figure 6 424 

a) The experimental spectrum with fringes (in red) was corrected by means of the EMSC model, resulting in 425 

the blue spectrum. The result is shown together with the pure absorbance spectrum (see Fig. 2a) in green 426 

used as a reference spectrum; 427 

b) FT of the experimental spectrum with fringes of Fig. 6a in red; 428 

c) FT of the experimental spectrum with fringes of Fig.6a in red using only the region between 6000 cm-1 429 

and 3700 cm-1; 430 
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d) Zero-filling for FT spectrum of Fig. 6c.   431 
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Appendix A 432 

Consider a thin film with a complex dielectric constant34 H\̃ as shown in Fig. 1. The left (front) and 433 

right (back) edges of the film are planes orthogonal to the x-axis, located at x=0 and x=l, respectively. The 434 

film naturally divides space into three regions, i.e. region I for x<0, region II for 0<x<l and region III for x>l 435 

(see Fig. 1). We assume that the film is embedded in air or vacuum so that we have H\ ≈ 1 in regions I and 436 

III. Rigorous treatments for transmission measurements through thin cells with liquids can be found in the 437 

references28, 35-37. Suppose a plane wave of frequency }, propagating in the x-direction, is incident 438 

orthogonally on the front surface of the film at x=0. Our task, then, is to compute the infrared radiation 439 

intensity scattered back into region I and the infrared radiation intensity transmitted into region III. We 440 

accomplish this by solving for the electric field amplitude  441 

~��D, (� = ~��D�G�$�� (A1) 442 

of the infrared radiation wave in regions I, II and III. From classical electrodynamics34 we know that ~��D� 443 

satisfies the Helmholtz equation  444 

� ]�]�� + H\S��� ~��D� = 0 (A2) 445 

where H\ = 1 in regions I and III and H\ = H\̃  in region II,  446 

S� = �� = 2K12 (A3) 447 

and c is the speed of light in vacuum. The solutions of Eq. A2 in the three regions are  448 

~���D� = ~�mG$�	� + �G�$�	�o (A4a) 449 

~����D� = ~�m
G$�� � + �G�$�� �o (A4b) 450 

~�����D� = ~�(G$�	� (A4c) 451 

where ~� is the field strength of the incident  radiation, A and B are complex constants, r is the reflection 452 

amplitude, t is the transmission amplitude and for non-magnetic materials 453 

S� = S + 5� = S��H\̃ = S�0� (A5) 454 

where S and � are the real and imaginary parts of S� , respectively, and 0� = �H\̃ is the complex refractive 455 

index.  456 

In order to determine the unknowns in Eqs. A4, we require that at the boundary surfaces of the film 457 

at x=0 and x=l and for orthogonal incidence the field strength ~��D� is continuous with a continuous first 458 

derivative. These boundary conditions are appropriate for non-magnetic (biological) materials. They would 459 
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also be the boundary conditions for a scalar-field approach to the thin-film scattering problem38. These two 460 

conditions then yield the following four equations  461 

1 + � = 
 + � (A6a) 462 

1 − � = e ���	g �
 − �� (A6b) 463 


G$�� " + �G�$�� " = (G$�	" (A6c) 464 


G$�� " − �G�$�� " = e�	�� g (G$�	" (A6d) 465 

Solving Eqs. A6a and A6b for A and B, we obtain  466 


 = �� �e1 + �	�� g + � e1 − �	�� g� (A7a) 467 

� = �� �e1 − �	�� g + � e1 + �	�� g� (A7b) 468 

We may also solve Eqs. A6c and A6d for A and B. We obtain  469 


 = �� G�$�� "( e1 + �	�� g G$�	" (A8a) 470 

� = �� G$�� "( e1 − �	�� g G$�	" (A8b) 471 

Taking the ratio A/B of Eqs. A7a and A7b, then taking the ratio of Eqs. A8a and A8b and equating the two 472 

ratios yields a single equation for r, where t is eliminated. Solving this equation for r, we obtain 473 

� = ������� �������� !"���#���� �������� !"�#�$�� %&������ !"� (A9) 474 

Since r is now known, we may now compute A and B, using Eqs. A7a and A7b. With A and B known we 475 

may now compute the transmission amplitude t from either Eq. A6c or Eq. A6d. The result is 476 

( = �$��*+�,-.!/��#���� �������� !"�#�$�� %&������ !"� (A10) 477 

The infrared radiation intensity incident on the film is 478 

�� = �� H�|~�|� (A11) 479 

Defining the reflectance  480 

n = |�|� (A12) 481 

and the transmittance  482 

� = |(|� (A13) 483 

the final expressions for reflectance and transmittance in a case of real refractive index � are given by 484 

n = ���������$������� !"�>���#���������$������� !"� (A14) 485 
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and   486 

� = �
�#�̂e�̂����g� ��������� !"�. (A15) 487 

In the case with complex refractive index 0��32� = 0�32� + 50′�32� the expressions for reflectance and 488 

transmittance are given by  489 

n = �����#$�′�������%&��>�� !"����>��� !"�#$�$��>�� !"����>��� !"�����#$�′��#�����#$�′�������%&��>�� !"����>��� !"�#$�$��>�� !"����>��� !"�� (A14a) 490 

and 491 

� = ���#$�′�����#$�′��#�����#$�′�������%&��>�� !"����>��� !"�#$�$��>�� !"����>��� !"��. A(15a) 492 

The intensity of the scattered radiation is 493 

���� = ��n (A16) 494 

and the intensity of the transmitted radiation is 495 

� = ��� (A17) 496 

The absorbance can be calculated according to Eq. 2 and because of the presence of the sin and cos 497 

functions shows considerable deviations from Beer’s law39, i.e. the absorbance is not a simple exponential 498 

function in the thickness of the sample. Therefore, it is important to note that only when neglecting the 499 

scattering, is the absorbance in the film simply related to the imaginary part of 0�, where 0� = �H\̃ . This can 500 

be seen in the following way. According to Eq. A4b, neglecting the presence of the back wall of the film and 501 

the scattering off of the front surface of the film, a wave moving through the film in forward direction has the 502 

form  503 

~��D� = ~�G$�� � (A18) 504 

where ~� is the field strength of the radiation just outside of the front surface of the film and S�  is the 505 

complex wavenumber defined in Eq. A5. In analogy to Eq. A11, the radiation intensity at the back surface of 506 

the film is 507 

� = �� H�j~�j� = �� H�|~�|�G���" (A19)  508 

which now, but only as a consequence of the simplifications introduced, is indeed of the form of Beer’s law. 509 

Then, with Eq. A11,A17 and Eq. A19, we have  510 

� = G���" = G�>��′" ! (A20) 511 

from which we obtain the absorbance 512 
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 = − log����� = 4K0′s12/ln�10� (A21) 513 

For a more detailed description we refer the reader to the text book of Griffiths34. 514 

Appendix B 515 

According to rigorous theory fringes were easily simulated with the help of Eqs. 1, 2, 5 and 6. The 516 

result is shown in Fig. 2b, where for the calculation of the transmission amplitude a real refractive index 517 

of	0�	 = 	0� = 1.33 and a film thickness of s = 4.3	μ?	 were used. Although periodicity was not obvious 518 

from the formula presented in Eq. 6, the fringes obtained in Fig. 2b are visually periodic. In this Appendix 519 

we will show that the assumption of periodicity, i.e. replacing the exact electromagnetic result for the 520 

absorbance given by Eqs. 1, 2, 5 and 6, by a sinusoidal function in the EMSC model in Eq. 9, is justified and 521 

results in a very small error. 522 

Let us consider the formulas Eqs. 1, 2, 5 and 6 in the rigorous theory for fringes. Using Eqs. 1, 5 and 523 

6, we calculate the transmittance T 524 

� = |(|� = >�	���#�	��� ��������	 !"�#>�	� %&������	 !"� = �
�#�̂e�̂	��	g� ��������	 !"�

.  (A22) 525 

Now we use Eq. 2 to obtain the absorbance A  526 


 = − log����� = − log�� �1 + �> e ��	 − 0�g� sin��2K0�12s���� = "���#�̂e�̂	��	g� ��������	 !"��"��� .  (A23) 527 

By means of the Taylor series for the natural logarithm 528 

s0�1 + D� = D − ��� + ��� −⋯ = ∑ ��������^��#�� = ∑ �����+^�����������   (A24) 529 

where −1 < D ≤ 1, we find the Taylor series for the absorbance A in the following way 530 


�12� = "���#�̂e�̂	��	g� ��������	 !"��"��� =531 

�"��� ��> e ��	 − 0�g� sin��2K0�12s�� − �"��� � ��� e ��	 − 0�g> sin>�2K0�12s�� + ⋯ =532 

�>"��� e ��	 − 0�g� ��%&��>��	 !"�� − ���"��� e ��	 − 0�g> ���%&��>��	 !"���> +⋯    (A25) 533 

To calculate sin��2K0�12s� we used the half-angle formulas.  534 

By estimating the first and the second terms in the Taylor series for absorbance for 0� = 1.33, we have: 535 

D� = �14 � 10� − 0��� sin��2K0�12s�� = �14 � 11.33 − 1.33�� sin��2K ∙ 1.33 ∙ 12s�� ≤ 0.083556 
1s010 D� ≤ 0.0362878 
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D� = �"��� �
�̂
� ≤ 0.001516    (A26) 536 

We conclude that the second term D� of the series is about 4% of the first term and therefore the 537 

impact of all terms of the series from the second term on is not significant. This means that the replacing of 538 

exact electromagnetic calculations for the description of scattering of electromagnetic radiation at a thin film 539 

given by Eqs. 1, 2, 5 and 6 via sinusoidal functions is justified. 540 

It is also important to note, that the series expansion is valid not for any refractive index. By 541 

estimating D� we conclude that the refractive index 0� should satisfy the condition 0� ≤ 2.4. Calculations 542 

were done for a plane wave with phase zero. Thus, in general, both sine and cosine terms have to be taken 543 

into account in the EMSC model for the description of scattering effects of electromagnetic radiation at a 544 

thin film. It can also be shown that for refractive indices above 1.9 and below 2.4, additional terms have to 545 

be taken into account. This is beyond the scope of this paper and will be discussed in a subsequent paper.546 
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