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The physical and chemical properties of molecular crystals are a combined function of molecular structure

and the molecular crystal packing. Specific crystal packings can enable applications such as

pharmaceuticals, organic electronics, and porous materials for gas storage. However, to design such

materials, we need to predict both crystal structure and the resulting physical properties, and this is

expensive using traditional computational methods. Machine-learned interatomic potential methods

offer major accelerations here, but molecular crystal structure prediction remains challenging due to the

weak intermolecular interactions that dictate crystal packing. Moreover, machine-learned interatomic

potentials do not accelerate the prediction of all physical properties for molecular crystals. Here we

present Molecular Crystal Representation from Transformers (MCRT), a transformer-based model for

molecular crystal property prediction that is pre-trained on 706 126 experimental crystal structures

extracted from the Cambridge Structural Database (CSD). MCRT employs four different pre-training tasks

to extract both local and global representations from the crystals using multi-modal features to encode

crystal structure and geometry. MCRT has the potential to serve as a universal foundation model for

predicting a range of properties for molecular crystals, achieving state-of-the-art results even when fine-

tuned on small-scale datasets. We demonstrate MCRT's practical utility in both crystal property

prediction and crystal structure prediction. We also show that model predictions can be interpreted by

using attention scores.
1 Introduction

Molecular crystals have diverse applications including phar-
maceuticals,1 organic electronics,2 optical materials,3 and
materials for gas storage and separation.4–6 In all cases, the
properties of molecular crystals depend on the crystal packing.
For example, pharmaceutical molecules can have widely
different solubilities depending on the crystalline form, and in
organic electronics, charge transport is critically dependent on
crystal packing. However, molecular crystal packing is notori-
ously difficult to predict because it is dictated by a range of weak
intermolecular interactions, such as van der Waals forces,
aromatic pi-stacking, and hydrogen bonds.7 This is a major
hurdle for digital material design because if we cannot predict
crystal structure then we cannot, by denition, predict the
functional properties of the crystal. To address this challenge,
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crystal structure prediction (CSP) methods have been created to
identify molecular crystals with specic target functionalities.
For example, energy–structure–function (ESF) maps have
guided the synthesis of various functional molecular crystals.6–10

However, despite these successes, calculating the physical
properties for each structure on an ESFmap, or even a sub-set of
low-energy structures, can be computationally demanding. This
problem is two-fold: the prediction of lattice energy, or crystal
stability, is itself computationally expensive, and the functional
property calculations are usually even more expensive. To tackle
this, there has been a surge of interest in machine learning (ML)
techniques for the rapid prediction of materials properties and
the elucidation of structure-property relationships11,12 at a frac-
tion of the cost of rst-principles methods, such as density
functional theory (DFT).

Learning accurate representations is a crucial aspect of
machine learning theory that also extends to learningmolecular
representations. Different types of materials pose different
challenges when learning accurate latent representations. For
example, in solid-state systems it is essential to capture features
such as long-range interactions and periodicity in property
prediction tasks.13 This is especially challenging in organic
molecular crystals due to the intermolecular interactions,7

which are typically weaker than for ionic inorganic materials.
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Hence, many of the inherently local graph-based deep archi-
tectures fail to capture global-driven properties, while tradi-
tional ML models that use hand-craed descriptors have been
more successful in capturing spatial information in some
cases.14,15 Hand-craed descriptors such as smooth overlap of
atomic positions (SOAP)16 and atom-centered symmetry func-
tions (ACSFs)17 have proven effective in predicting properties
like lattice energy,12 while geometric descriptors such as
accessible surface area and pore diameters have been used to
predict the methane deliverable capacity of molecular crystals18

as well as other global-driven properties of porous materials.19

More recently, persistent homology20,21 was shown to encode
global molecular geometric features into machine-learned
representations.22 Nevertheless, calculating descriptors such
as SOAP can be cumbersome in terms of memory footprint for
larger organic systems, whereas geometric descriptors tend to
overly compress the geometric information of the crystals,
failing to adequately encode the ne detail of the molecular
geometry. Another fundamental drawback of deep learning
models is the need for re-training and hyperparameter re-
optimization for each specic problem and property, adding
further time and computational cost. A further challenge is the
availability of training data: ideally, we need methods that can
be ne-tuned on small scale datasets, because for chemistry
problems, data is oen scarce and expensive.

Transfer learning allows a model trained on one task to be
adapted to a different task, signicantly reducing the need for
extensive retraining. Universality is a key aspect of a pre-trained
model to allow it to capture simultaneously molecular features
of varying modalities, as well as local and global interactions.
Recently, pre-trained models using transformers23 have been
designed for metal–organic frameworks (MOFs) and showed
exceptional performance across a range of different tasks.24–27

Transformers enable multi-modal input integration combined
with self-attention layers that can process data sequences in
parallel, allowing for much more efficient training routines.
Also, the attention scores (AS) within the self-attention layers
can be used to analyse feature importance and thus offer an
interpretability tool to gain insights on the prediction process
itself, unlike other black-box learning systems. A leading
example is BERT,28 a pre-trained language transformer model
that shows state-of-the-art results across various downstream
tasks aer being trained on large-scale data. More recently,
vision transformers architectures (ViTs)29 have paved the way
for the integration of multi-modal inputs towards more
universal models30–32 and inspired a number of recent works in
materials science.24–27,33–35

There are two key challenges when designing the pre-
training framework of a universal transformer model, namely
the choice of multi-modal input features and the design of pre-
training tasks. The choice of appropriate input features is
crucial to enrich the representation capacity of the pre-trained
model so it is applicable across a wide-range of tasks, while
the pre-training tasks should be designed carefully to efficiently
but accurately capture both local and global interactions across
the training set. The design of a pre-training framework is
challenging for organic molecular crystals that are dened by
© 2025 The Author(s). Published by the Royal Society of Chemistry
a range of inter- and intra-molecular interactions of widely
varying strength and directionality, combined with geometric
information about symmetry and molecular packing.36

Here we introduce a foundation model focused onmolecular
crystal structures that can be used as a universal tool for a wide
range of prediction tasks for materials applications that would
otherwise require time-consuming calculations. We present
a novel transformer-based pre-training framework—Molecular
Crystal Representation from Transformers (MCRT)—that has
been pre-trained on a dataset of 706 126 experimentally-
determined structures sourced from the Cambridge Structural
Database (CSD).37 MCRT accommodates multi-modal inputs
that encode both local and global features in conjunction with
a set of carefully designed pre-training tasks that help capture
universal representations for predicting a wide range of
different crystal properties, achieving state-of-the-art perfor-
mance. We tested MCRT's performance on a range of prediction
tasks on crystalline properties such as lattice energy, methane
deliverable capacity (as relevant for natural gas-powered vehi-
cles), diffusivity, bulk modulus (relevant to the tabletting of
pharmaceuticals) and charge mobility (relevant in organic
electronics), thus demonstrating that the model can be applied
to both porous and non-porous organic solids. We further
explored different ablations of the proposed model, as well as
its learning capacity limits under data scarcity conditions.
Importantly, MCRT's attention-based architecture allows us to
gain a more intuitive understanding of the structure–property
relationships in molecular crystals through cumulative atten-
tion scores38 from across the different layers of MCRT.

2 Results and discussion
2.1 Overview of pre-training framework

The overall framework of MCRT is illustrated in Fig. 1a. It
comprises a transformer encoder module that is used to build
a pre-trained model that then acts as foundation for ne-tuning
on a range of downstream prediction tasks. The pre-trained
model was built with universality in mind, and designed to
distill critical features of molecular crystals without the need for
labeled data and, subsequently, to extrapolate desirable phys-
ical properties across various applications aer ne-tuning.
This transformer is therefore designed as a multi-modal
architecture that processes two distinct input modalities that
encode both local and global information: atom-based graph
embeddings and persistence image embeddings.

2.1.1 Atom-based graph embeddings. These are embed-
dings taken from the penultimate layer of an ALIGNN archi-
tecture,39 which performs message passing on both the
interatomic bond graph and its line graph corresponding to
bond angles, thus integrating bond length and angle informa-
tion to provide a more enriched representation of the local
environments in a crystal structure. To further enhance the
positional information of each atom and to support an efficient
training process, we added relative positional embeddings to
the atomic features (Fig. S2†), which were integrated with the
atomic features before being fed into the transformer encoder
during each training epoch. The positional embeddings were
Chem. Sci., 2025, 16, 12844–12859 | 12845
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Fig. 1 Schematic overview of MCRT framework. (a) Molecular crystals are represented using local and global features, which are then fed into the
model. During the pre-training phase, the model undergoes pre-training on four tasks: masked atom prediction (MAP), atom pair classification
(APC), crystal density prediction (CDP), and symmetry element prediction (SEP). In the fine-tuning phase, the model is initialised with parameters
from the pre-trained model and a simple prediction head is added to train for the desired properties of molecular crystals. (b) Architecture for
pre-training MCRT. Before being fed into themodel, 15% of the atoms are randomly masked, and the model is tasked with predicting the types of
the masked atoms based on the final atomic representations. Each atom is pre-assigned a molecular label, indicating which molecule within the
P1 unit cell it belongs to, thus providing labels for atom pairs in the subsequent APC task. Meanwhile, SEP and CDP tasks, as global pre-training
tasks, leverage the output of the [CLS] token representing the entire crystal for their predictions.
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derived by randomly perturbing the structure, a process that
enables the model to better capture the relative positions of
atoms in the system, while also mitigating permutational
invariance problems.

2.1.2 Persistence image embeddings. These embeddings
are generated from persistent homology images40 and encode
global structural information about each crystal structure. This
complements the local information provided by the atom-based
12846 | Chem. Sci., 2025, 16, 12844–12859
graph embeddings. Persistent homology has shown potential
recently in capturing the topological features of porous mate-
rials, demonstrating improved performance in adsorption
prediction.41 More broadly, persistence images in crystal struc-
tures encode topological changes as these occur when spheres
centered on the atoms increase their radii. These topological
changes can include the development of channels (1D persis-
tence image) and voids (2D persistence image) within the
© 2025 The Author(s). Published by the Royal Society of Chemistry
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structure and can therefore have a critical effect in the global
representation of the structure in downstream tasks where
geometric information is crucial. As exemplied in Fig. S1,† the
existence of channels and voids is encoded in diagrams that are
subsequently transformed into images that further capture the
spatial distribution of topological features.40 Here we segment
persistence images of molecular crystals into patches of xed
size and feed them into the transformer encoder as an addi-
tional modality. Further details can be found in Section 4. The
transformer encoder architecture that we used in our frame-
work was inspired by BERT,28 which is based on a bidirectional
training strategy employing masked language modeling (MLM)
and next sentence prediction (NSP) objectives. A [CLS] token is
used to predict desired properties by training a multi-layer
perception (MLP) head on it. The subsequent tokens are
embeddings of atoms and persistence images are segmented
into patches, separated by a [SEP] token. At the end of each
image, two [SCL] tokens are added to indicate the maximum
persistence value and maximum birth value of the persistence
images. This method ensures a more balanced distribution of
data across pixels, instead of scaling each image to a universal
maximum size, which could lead to the concentration of most
of the information within just a few pixels. It also enhances the
model's robustness, preventing failures when processing larger-
scale images in future applications. The full pre-training
architecture is illustrated in Fig. 1b.
2.2 Pre-training results

To capture universal latent representations of molecular crys-
tals we designed four pre-training tasks performed on a dataset
of 706 126 experimental structures sourced from the Cambridge
Structural Database (CSD),37 namely a masked atom prediction
task (MAP), an atom pair classication task (APC), a crystal
density prediction task (CDP) and a symmetry element predic-
tion task (SEP). The MAP and APC tasks capture local chemical
information, while the CDP and SEP tasks capture global
structure information.

2.2.1 Masked atom prediction (MAP). The goal of the MAP
task is to predict the type of randomly selected masked atoms,
which gives the model a deeper understanding of the various
local chemical environments of atoms. Similar to the masked
word prediction task in the BERTmodel, 15% of the atoms were
masked before being inputted into the model. Of these, 80%
were replaced with a [MASK] token, 10% were replaced with
another random atom, and the remaining 10% were le
unchanged (Fig. 2a). This approach avoids replacing all selected
atoms with [MASK] tokens as these do not appear in down-
stream tasks and helps mitigate the mismatch between pre-
training and ne-tuning. The accuracy of the MAP task on the
pre-training dataset was 99.9%.

2.2.2 Atom pair classication (APC). In the APC task, the
model attempts to distinguish whether a pair of atoms comes
from the same molecule. This task is designed to help the
model distinguish the different molecules within a crystal cell
and to gain a deeper understanding of the crystal structure,
noting that intermolecular and intramolecular interactions are
© 2025 The Author(s). Published by the Royal Society of Chemistry
highly diverse—more so than for ionic, inorganic crystals.
Specically, for each crystal, a certain number of atom pairs are
randomly selected for this process ensuring that half of these
pairs come from the same molecule, and the other half from
different molecules to balance bias. To ensure that the order of
atoms does not affect the prediction results, the representation
vectors of the two atoms are concatenated in both forward and
reverse order, passed through the same prediction head, and
the outputs are summed to obtain the nal prediction result, as
shown in Fig. 2b. Crystal structures were represented as graphs
where disconnected sub-graphs were considered as isolated
molecules. If the number of atom pairs is too large, then the
training process will be slowed down by the sampling process.
Conversely, if the number of pairs is too small, then the training
accuracy will improve very slowly. It was observed empirically
that using 200 atom pairs per crystal gives a fair balance
between training speed and accuracy. The accuracy of APC task
on the pre-training dataset was 99.9%.

2.2.3 Crystal density prediction (CDP). Crystal density is
linked to the packing density of molecules and serves as a cheap
and easy-to-obtain proxy label during pre-training. Due to the
signicant impact of molecular packing density on the porosity
of molecular crystals, CDP is a particularly important task for
applications that depend on crystal voids, such as adsorption,
although it might also be expected to have correlations with
other solid-state properties, such as charge mobility. Methane
deliverable capacity is one example of an adsorption property
task, and Fig. S5† illustrates the strong correlation between
methane capacity and crystal density for a hydrogen-bonded
framework (HOF) forming molecule, T2.7 Similar broad corre-
lations would be expected for other gases and other materials.
For the prediction of crystal density, the [CLS] token output by
the model was passed through a one dense layer head. The
mean absolute error (MAE) of CDP on the pre-training dataset
was 0.032 g cm−3. For reference, 99.6% of crystals in the pre-
training set have a physical density of >1 g cm−3 (average
density = 1.508 g cm−3), so this is a relatively small error.

2.2.4 Symmetry element prediction (SEP). The space group
of a crystal can be considered as a blueprint that provides
important information about its global structure. However,
a direct prediction of space group can be challenging due to the
strongly imbalanced distribution of space groups among crys-
tals, where >80% of molecular crystals occupy just 5 of the 230
existing space groups.15 This class imbalance, in conjunction
with the complex symmetry information contained in under-
represented space groups, oen hinders the learning of mean-
ingful space group representations. Instead of using space
groups explicitly, we focused on the less imbalanced task of
predicting the total symmetry elements that dene each space
group, which effectively encodes the same foundational infor-
mation contained in space groups. There are six types of
symmetry elements:42 inversion center, mirror plane, rotation
axis, screw axis, rotoinversion axis, glide plane. Considering the
case of no symmetry elements (P1 space group), the output of
this task then becomes a 7-dimensional multi-hot vector (note
that a structure can correspond to multiple different symmetry
elements). For a successful prediction, all elements of the
Chem. Sci., 2025, 16, 12844–12859 | 12847
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Fig. 2 Summary of pre-training tasks. (a) Scheme for masked atom prediction (MAP) task. Among the masked atoms, 80% are replaced with the
[MASK] token, 10% are replaced with a random atom, and 10% remain unchanged. (b) Scheme for atom pair classification (APC) prediction head.
Representations of a pair of atoms are concatenated in two orders to eliminate the impact of atom sequence, ensuring more stable predictions.
(c) The t-SNE embeddings of the [CLS] tokens of 706 126 experimental molecular crystals obtained from the pre-trained model, with crystals
containing only one type of symmetry element being coloured. (d) The t-SNE embeddings of the [CLS] tokens of 706 126 experimental molecular
crystals obtained from the pre-trained model, with colour indicating density, and the top and bottom 5% of densities truncated for better
visualisation.
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prediction must match the label exactly. Pre-training the SEP
task on the pre-training dataset results in a prediction accuracy
of 98.5%.

To validate the representation learning capacity of our
proposed pre-training framework here, we visualised the
learned representations by MCRT ([CLS] tokens) of all 706 126
crystals in 2D using t-SNE.43 Since a crystal can contain multiple
types of symmetry elements, we selected crystals containing
only one type of symmetry element and highlighted them with
a different colour. The low dimensional map of Fig. 2c validates
that crystals with similar symmetry elements cluster together. It
is noteworthy that certain symmetry elements manifest as
multiple clusters in the t-SNE embeddings, which can be
attributed to the nuanced differentiation of space groups. For
example, screw axes are present in several space groups, as
depicted in Fig. S6.† Specically, the two prominent clusters
correspond to space groups 4 (P21) and 19 (P212121). Although
the model was not explicitly trained to recognize space group
information, it automatically learned and differentiated
between various space groups during the pre-training phase.
This capability highlights the model's inherent ability to
12848 | Chem. Sci., 2025, 16, 12844–12859
capture and classify structural features of molecular crystals
and to comprehend underlying crystallographic principles.
Additionally, Fig. 2d shows a re-labeling on the same map using
crystal density values, where it can be seen that crystal density
exhibits a gradient distribution within most of the symmetry
element clusters, indicating that the embedding vectors cluster
according to similar densities. Taken together, these results
suggest that the pre-trained model has been successfully
trained to capture key features of molecular crystals.
2.3 Fine-tuning results

Next we demonstrated the utility of our pre-training framework
through a series of ne-tuning experiments on a diverse range
of crystal property prediction tasks. These include lattice energy
prediction, methane deliverable capacity prediction (298 K,
pressure cycle of 65–5.8 bar), methane diffusivity prediction
(298 K at innite dilution), bulk modulus prediction, and
charge mobility prediction, a task related to organic semi-
conductors. We also tested MCRT's predictive performance in
D-E tasks; that is, the lattice energy difference between DFT and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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force eld accuracy calculations, to assess its extrapolation to
higher accuracy levels of energy prediction.

The datasets used in these tasks spanned a wide variety of
molecules. For lattice energy prediction, the dataset included
a set of 10 structurally related molecules with small changes in
hydrogen bonding functionality, derived from earlier crystal
structure prediction (CSP) studies,6 providing a relevant test for
ne-tuning a model to study a closely related family of mole-
cules. By contrast, the D-E task involved a deliberately diverse
set of 1018 organic molecules, designed to develop a general-
ised ML model capable of improving lattice energy predictions
across broad and chemically diverse areas of molecular space.15

The charge mobility predictions focused on 7 pentacene and
azapentacene molecules,10 which are compounds in organic
semiconductor research, while the methane capacity and
diffusivity tasks were based on CSP structures for the HOF-
forming molecule, T2.7 The bulk modulus task involved 25
small, organic molecules selected by farthest-point sampling
from the large-scale CSP study.15 All datasets (except for D-E)
were randomly split with a train-validation-test ration of 80% :
10% : 10%. The D-E dataset was split according to the original
paper.15 A detailed description of the datasets and the methods
used for their generation can be found in Section 4.

Table 1 reports the mean absolute error (MAE) results for
ne-tuning MCRT and its variants, compared against state-of-
the-art baseline models. SOAP-based random forest (RF)44 and
kernel ridge regression (KRR),45 graph-based CGCNN13 and
ALIGNN,39 and pre-trained crystal twins (CT)36 were selected as
baseline models due to their universality and competitive
performance in predicting materials' properties.12,41,46 For
a detailed description of these methods and their featurisa-
tions, as well as the MCRT variants used in benchmarking, see
Section 4.

For lattice energy prediction, three datasets of different sizes
were used to validate the model's transferability capabilities
under limited data availability scenarios. We note here that
LE_all includes the CSP landscapes of 10 molecules, all with
hydrogen bonding functionality (see Fig. 5a, below), comprising
73 779 structures in total with their associated lattice energies.
LE_T2 represents the CSP landscape of the T2 molecule with
Table 1 Mean absolute error (MAE) results for the fine-tuned MCRT mo

Property (size, unit) RF KRR CGCNN ALIGN

LE_all (70k, kJ mol−1)a 7.79 6.90 5.95 2.68
LE_T2 (8k, kJ mol−1)a 7.79 8.44 6.13 3.45
LE_T2A (1k, kJ mol−1)a 3.34 3.96 3.20 3.27
MC (5k, v STP/v)b 11.60 11.75 15.87 12.17
MD (5k, 10−8 cm2 s−1)b 0.75 0.68 1.08 0.79
CM (1k, cm2 V−1 s−1)c 0.59 0.60 0.70 0.62
BM (6k, GPa)d 0.52 0.82 0.59 0.56
D-E (11k, kJ mol−1)e 2.82 3.13 2.33 2.90

a LE_all (70k), LE_T2 (8k) and LE_T2A (1k) denote lattice energy with 73 77
methane capacity and methane diffusivity with 5687 data points, respectiv
denotes bulk modulus with 6087 data points. e D-E (11k) denotes the
comprising 11 458 data points. f MCRTp is MCRT without pre-training.
using absolute positional embedding. The best results for each property a

© 2025 The Author(s). Published by the Royal Society of Chemistry
8293 structures and energies, while LE_T2A corresponds to the
CSP landscape of the T2A molecule with 1367 structures and
energies. Both LE_T2 and LE_T2A are subsets of LE_all.

The ne-tuned MCRT model outperformed all other models
across all tasks, demonstrating both superior predictive capa-
bility and universality. ALIGNN exhibited better performance
compared to other baseline models when predicting LE_all
(70k) and LE_T2 (8k), but its performance on LE_T2A (1k) does
not stand out against other models. We hypothesise that this
could be due to ALIGNN encoding angular information, and
thus making the model more complex than other baseline
models and more prone to overtting with insufficient training
samples. By contrast, MCRT, with proper pre-training, still
demonstrates relatively good predictive performance even with
this small dataset of 1367 structures and energies. Graph-based
models outperform SOAP descriptor-based models in predict-
ing lattice energy, a property strongly related to the local
chemical environment of atoms. Deep models on the other
hand perform poorly in predicting methane capacity (MC) and
diffusivity (MD) which are properties related to global structural
features. A similar observation was also conrmed by studies
using the MOFTransformer model.24 This phenomenon is
further validated by the poorer performance of the purely graph-
basedMCRTimodel. When the persistence image component is
added, the MCRT model's performance improves signicantly,
further emphasising the importance of global geometric
features in adsorption and diffusion predictions. Regarding the
performance of the non-pre-trained MCRTp, it maintains
a competitive performance, but is noticeably inferior to the pre-
trained MCRT. For predicting bulk modulus, non-pre-trained
MCRTp performed worse than the descriptor-based RF model
and graph-based models. However, aer pre-training, MCRT
achieved the highest predictive accuracy, demonstrating the
effectiveness of the pre-training strategy. The ablation model
MCRTa used absolute positional embeddings as opposed to
relative ones. Despite undergoing the same pre-training stage,
its prediction accuracy across various tasks was consistently
inferior to that of MCRT, indicating that absolute positional
embedding, which does not satisfy translational and rotational
invariance, indeed increases training difficulty.
dels and baseline models for a wide range of properties

N CT MCRTpf MCRTig MCRTah MCRT

4.85 3.31 2.63 2.59 2.34
5.21 3.84 3.20 3.27 2.96
3.19 2.98 2.60 2.57 2.15

14.53 9.88 10.81 9.91 8.82
0.92 0.50 0.57 0.48 0.42
0.62 0.62 0.54 0.60 0.52
0.58 0.65 0.56 0.60 0.51
2.25 1.82 1.62 1.70 1.57

9, 8293 and 1367 data points, respectively. b MC (5k) and MD (5k) denote
ely. c CM (1k) denotes charge mobility with 1130 data points. d BM (6k)
difference in lattice energy between DFT and force eld calculations,
g MCRTi is MCRT without persistence image part. h MCRTa is MCRT
re highlighted in bold.
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Fig. 3 reports test-set results in R2 for MCRT and baseline
models along with performance correlation plots of MCRT
across all downstream prediction tasks. From the radar plot in
Fig. 3a, MCRT scores the highest R2 across all prediction tasks,
especially in the data-scarce charge mobility (CM) dataset,
where it signicantly outperforms other models. Although
baseline models may perform well on specic tasks, they
struggle to balance performance across diverse tasks. For
instance, ALIGNN excels in lattice energy prediction but shows
only average performance in other areas. This further highlights
the universality of MCRT.

Beyond prediction errors, experimental materials
researchers are interested in ranking the best-performing
structures to prioritize as experimental targets. For lattice
energy predictions, structures with lower lattice energies are
more likely to be synthesizable. Fig. 3b, c, and d, demonstrate
that MCRT successfully predicts most of the lowest-energy
Fig. 3 MCRT outperforms other baseline models for all downstream p
coefficient of determination R2 on test sets of MCRT and baseline mode
(70k), (c) LE_T2 (8k) (d) LE_T2A (1k), (e) MC (5k), (f) MD (5k), (g) CM (1k),
interest, the yellow regions represent the areas where the top n actual va
top n predicted values are located. The points in the intersections repres
sub-figure is intended to provide a clearer visualisation of the densely p

12850 | Chem. Sci., 2025, 16, 12844–12859
structures for the molecules considered, highlighting the
model's practical utility.

For methane capacity (MC), a property with high computa-
tional screening cost, MCRT successfully predicts all the top ten
best-performing structures, highlighting its potential for
robustly accelerating high-throughput computational screening
procedures using crystal structure prediction. Here, this may be
a better measure thanMAE since we aremainly interested in the
best-performing crystals. An extensive analysis is included in
Table S2,†where the class of best-performing materials in MC is
further expanded to a larger subset, without however affecting
MCRT's performance, as opposed to other competitors whose
prediction errors deteriorate substantially. Additionally, for
methane diffusivity (MD), which is a challenging property to
capture and predict using machine-learned interatomic poten-
tials, MCRT still delivered the best predictive performance and
successfully identied nine out of the top ten best-performing
rediction tasks, identifying the top few structures of interest. (a) The
ls. The prediction results on test sets of fine-tuned MCRT for (b) LE_all
(h) BM (6k), (i), D-E (11k). Inset sub-figures are illustrations of areas of
lues are located, while the green regions indicate the areas where the
ent the top n points that were successfully predicted. For MD (5k), the
opulated region.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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structures. When it comes to charge mobility (CM), a property
with sparse data due to high computational cost, all models
struggle somewhat with its prediction, but MCRT still identied
seven out of the top ten structures with highest charge mobility.
Finally, regarding the D-E task, MCRT captures more accurately
the relative energy relationships across various structures. As
shown in Fig. 3i, the corrected energies by MCRT (turquoise
points) align more closely with DFT-calculated results than
those calculated by force elds (grey points), importantly in the
low-energy regime, again successfully predicting all of the top
ten structures. Further error analyses for all competitors are
provided in Fig. S7.†
2.4 Interpretability

Feature importance analysis is an inherent capability of trans-
former models that helps us here to better understand the
relationship between molecular crystal structures and their
properties. Cumulative attention scores of the [CLS] token were
calculated to measure the model's assigned attention to input
features according to their importance. An attention rollout
strategy38 was employed by recursively multiplying attention
weights across layers, providing more focused patterns for
interpreting which input tokens contribute the most to the
model's output. Higher attention scores indicate greater
importance for the model's prediction. Fig. 4 provides an
intuitive visualisation of the explainability scores for an exper-
imentally synthesized structure, T2-g,7 for methane capacity
(le column) and lattice energy (right column), illustrating
explainable feature importance for both modalities.

When predicting methane capacity, the model shows little
attention toward the atomic graph modality (Fig. 4a). However,
the model places signicantly higher attention on persistence
images when predicting methane capacity than when predicting
lattice energy (Fig. 4c/g, and d/h), as highlighted by the salmon-
coloured areas in the persistence images. This further validates
that global geometric features are more important for adsorption
predictions, aligning with ndings from previous studies.21,47 In
particular, when predicting methane capacity, the model places
particularly high attention to the 1D persistence image, which
encodes information about the pores in the crystal. The [SCL]
token indicating the largest persistence value is identied as the
model's most signicant feature, receiving an attention score far
exceeding those of other image patches. The persistence value
represents the radius of the largest sphere that can pass through
the topological object, effectively corresponding to the pore
radius. Subsequently we mapped the topological objects within
the patches near the largest persistence back to the representative
cycles in the original T2-g structure. The objects near the largest
persistence value correspond to the large pores in T2-g as shown
in Fig. 4b. The largest persistence value thus contains essential
information about the pore size, which is crucial for predicting
adsorption properties.48

For lattice energy predictions, the model exhibits marked
attention to the hydrogen-bonding benzimidazole groups of the
T2 molecule (Fig. 4e). To evaluate the accuracy of the chemical
insights provided by these attention scores, an electron density
© 2025 The Author(s). Published by the Royal Society of Chemistry
difference (EDD) analysis was performed on T2-g, as shown in
Fig. 4f. The yellow isosurfaces represent regions with increased
electron density, while the blue isosurfaces indicate regions with
decreased electron density. Normally, a larger magnitude of
electron density shi indicates stronger intermolecular interac-
tions. Notably, expanding to a supercell, we observe strong
attention in regions corresponding to the areas of intense inter-
molecular interactions (Fig. S8d†). A similar phenomenon can
also be observed in other experimental T2 polymorphs, as shown
in Fig. S9 and S10.† This suggests that the model's attention
aligns with key regions of strong intermolecular interactions,
which play a crucial role in stabilising the crystal structure. Given
that subtle changes in these strong interactions can lead to
signicant differences in lattice energy,7 the ne-tuned model
appears to have effectively captured the critical chemical features
necessary for accurate lattice energy predictions.
2.5 Few-shot learning

Data is oen the limiting resource both in practical synthetic
chemistry and in computational materials studies due to the
high costs of synthetic or computational methods. Here we
explored our model's extrapolation capabilities on extremely
small datasets. Specically, we tested MCRT's predictive
performance in zero- and few-shot learning49 scenarios for
predicting lattice energies of T2 structures, using datasets
containing analogues of T2 to assess its generalization capa-
bility within a related molecular family.

We rst formed a test set using all T2-based structures
contained in LE_all (a dataset comprising CSP landscapes of T2
and analogues of T2). The remaining structures were then
randomly divided into training and validation sets in
a 90%:10% ratio to ne-tune MCRT. Subsequently, from the T2
structures, we sequentially separated 100, 200, 300, ., up to
1000 structures to further ne-tune the model obtained from
the previous step. The remaining structures were used as a test
set to assess the robustness of MCRT predictions. To provide
a clear performance comparison, we conducted the same
experiment using ALIGNN, the most competitive baseline
model for lattice energy prediction (Table 1). Fig. 5a illustrates
our training setup and Fig. 5b presents the MAE, R2 and top-10
prediction performances for MCRT and ALIGNN. In the zero-
shot scenario, MCRT exhibits signicantly higher prediction
accuracy compared to ALIGNN, indicating that aer learning
from similar structures, MCRT can generalize more effectively
to related but unseen structures. Furthermore, with just an extra
step of further ne-tuning on 100 structures, MCRT scores a low
prediction MAE (4.34 kJ mol−1). By contrast, even aer being
trained on 10 times more data (i.e., 1000 vs. 100 structures),
ALIGNN still fails to achieve MCRT's extrapolation capacity,
with a prediction MAE of 6.40 kJ mol−1. This was further echoed
by a series of energy-density landscape reconstruction tasks on
the different ne-tuned MCRT models. As shown in Fig. S15,†
MCRT accurately reproduces the relative positions of the four
experimental porous structures within the energy-density
landscape even with zero-shot learning, whereas ALIGNN fails
to effectively capture these relative positions, particularly
Chem. Sci., 2025, 16, 12844–12859 | 12851
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Fig. 4 Attention scores for atom-based embeddings and persistence image embeddings for a porous framework, T2-g. (a) Unit cell, (c) 1D and
(d) 2D persistence images of T2-g with attention scores for CH4 capacity. (b) The point cloud of atoms in T2-g, with red lines representing the
representative cycles corresponding to the topological objects in the persistence image. (e) Unit cell, (g) 1D and (h) 2D persistence images of T2-
gwith attention scores for lattice energy. (f) Electron density difference plot of T2-g highlighting the region of intermolecular interactions (yellow
isosurfaces = increased electron density; blue isosurfaces = decreased electron density). The strong intermolecular interactions are found for
the atoms that were attended to in e, also for other experimental T2 polymorphs (Fig. S9 and S10†). In the unit cells, the atomic size is
proportional to normalized attention scores, with scores less than 0.005 being clipped to avoid extremely small atoms (colour code: C, cyan; H,
white; N, blue; O, red). In the persistence images, the 10 patches with the highest attention scores are visualized with a salmon-coloured overlay,
where stronger intensities represent higher attention scores.

12852 | Chem. Sci., 2025, 16, 12844–12859 © 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Few-shot learning of lattice energies for 10 related hydrogen-bonding molecules. (a) Chemical structures of T2 and 9 other related
hydrogen-bonding molecules, including 4 triptycene framework candidates (TH1–TH4) and 5 small, monoaromatic molecules with the same
representative hydrogen bonding functionalities. In the few-shot learning experiment, the T2 structures in the LE_all dataset were extracted and
used as the test set. The remaining structures of other 9 molecules were used for training and validation of MCRT, resulting in a fine-tunedMCRT
model, yielding the zero-shot prediction results (sampled structures = 0). Subsequently, a small number of T2 structures (100–1000) was
randomly sampled as training and validation sets to further fine-tune this model. The remaining T2 structures and associated lattice energies
were used as the test set to evaluate the few-shot performance of MCRT. (b) The prediction results of the few-shot learning experiments of
MCRT and ALIGNN. Sampled structures refers to the number of T2 structures and associated lattice energies extracted as the training and
validation set during few-shot learning scenarios. TOP10 represents the number of correctly predicted structures among the 10 lowest-energy
structures.
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misplacing T2-d by conating it with numerous other struc-
tures, as illustrated in Fig. S16.† This further underscores
MCRT's practicality for computationally costly scenarios such
as crystal structure prediction.
3 Conclusions

We present a new universal transformer model, MCRT, together
with a pre-training framework for predicting a wide range of
physical properties for molecular crystals. We have designed
a multi-modal architecture that has the capacity to
© 2025 The Author(s). Published by the Royal Society of Chemistry
comprehensively learn both local and global representations of
molecular crystals. This ensures universal transferability for
MCRT across different tasks and structures, at least for the tasks
attempted here. We tested MCRT's predictive performance by
ne-tuning it on various diverse properties such as lattice
energy, methane capacity and diffusivity, bulk modulus, as well
as charge mobility. Our proposed model both outperformed
current state-of-the-art models and showed strong general-
isability performance in limited data availability scenarios. This
highlights the practical utility in robustly accelerating materials
discovery— for example, by rapidly estimating crystal structure
Chem. Sci., 2025, 16, 12844–12859 | 12853
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prediction energy landscapes based on landscapes calculated
for related molecules. Our MCRT model also provides insights
into structure–property relationships for molecular crystals
through its permeable, interpretable architecture design. While
such interpretability should not be equated to causal, physical
understanding, it is striking that the attention scores in the
MCRT model correlate so strongly with the key intermolecular
interactions in lattice-energy prediction tasks, at least for
molecules such as T2 that feature dominant hydrogen-bonding
patterns (Fig. 4e, f and S9–S11†).

MCRT performs well both in predicting properties across
a broad range and in highlighting the top few ‘best-performing’
crystals (Fig. 3b–h). From a practical perspective, both of these
tasks are important since there is very oen a trade-off between
different properties for real applications. To give just one example,
to design materials for methane storage, we need to predict
structures that have low lattice energies—that is, materials that
will be formed in experiments—while having methane capacities
that are high enough, rather than simply identifying the hypo-
thetical crystals that absorb the most methane. Both properties,
lattice energy and methane capacity, are expensive to calculate.
There are other important physical properties relevant tomethane
storage materials, not investigated here, such as mechanical
stability and thermal conductivity, which would add further
computational cost to a digital materials screening programme.
As such, the development of universal, inexpensive prediction
tools is a key priority in computational materials design. We
believe that MCRT can serve as a foundational infrastructure for
the molecular crystal research community, aiding us in the
accelerated exploration of the vast space of molecular crystals.
4 Methods
4.1 Pre-training datasets

To ensure high-quality crystal structures for the pre-training
dataset of MCRT, we selected 706 126 molecular structures
from the Cambridge Structural Database (CSD) database,37 pre-
ltered to satisfy the following criteria: (i) only structures with
fully determined three-dimensional coordinates were included to
ensure comprehensive spatial information; (ii) only structures
with an R factor of 0.1 or less were included to ensure high-quality
renement and accuracy of the crystal structures; (iii) structures
exhibiting any form of disorder were excluded to avoid compli-
cations in subsequent analysis and to maintain data consistency;
(iv) only structures without reported errors were included; (v) we
excluded polymeric structures, such as metal–organic frame-
works, focusing solely on discrete molecular crystals; (vi) only
single crystal structures were considered, ensuring higher preci-
sion in the determination of atomic positions. This robust pre-
ltering process was crucial to ensure the robustness and reli-
ability of our subsequent analysis and training.
4.2 Materials analysis

For the manipulation and labeling of the collected pre-training
set, we used the Python Materials Genomics (pymatgen)
library.50 In particular, for the APC task, the crystal structures
12854 | Chem. Sci., 2025, 16, 12844–12859
were represented as graphs, where disconnected sub-graphs were
considered as isolated molecules, for the SEP task the space
groups of the crystals were rst identied and subsequently were
mapped to their corresponding symmetry elements. For the
remaining tasks the label generation was straightforward using
pymatgen. Before being inputted into themodel, the crystals were
converted into the P1 space group to ensure the feasibility of
subsequent SEP and APC tasks during pre-training phase. For the
persistence image generation, we used MoleculeTDA21 to
compute persistence images with a resolution of 50 × 50 and
a spread of 0.15, consistent with previous studies.51 For the t-SNE
embedding, we used a perplexity parameter of 50, due to the large
size of the pre-training dataset.
4.3 Fine-tuning data collection

We ne-tuned MCRT on diverse properties of different molec-
ular crystals to validate the generality of MCRT's predictive
capabilities. The details of the datasets are as follows.

4.3.1 Lattice energy. Lattice energy calculations were per-
formed with an anisotropic atom–atom potential using DMA-
CRYS.52 Electrostatic interactions were modelled using an atomic
multipole description of the molecular charge distribution (up to
hexadecapole on all atoms) from the B3LYP/6-311G(d,p)-
calculated charge density using a distributed multipole anal-
ysis.53 Atom–atom repulsion and dispersion interactions were
modelled using a revised Williams intermolecular potential,54

which has been benchmarked against accurate, experimentally
determined lattice energies for a range ofmolecular crystals.55We
specically generated three ne-tuning datasets of different size
to test MCRT's predictive capacity on limited data availability
scenarios, namely LE_all, a dataset with 73 779 structures
composed of CSP landscapes on all the molecules listed in
Fig. 5a, LE_T2, the CSP landspace of T2 with 8293 structures and
LE_T2A, the CSP landspace of T2A with 1367 structures.

4.3.2 CH4 deliverable capacity. A dataset of 5687 T2-based
structures with calculated CH4 deliverable capacity (298 K, 65–
5.8 bar) was directly retrieved from the previous work.7

4.3.3 CH4 diffusivity. A dataset of 5687 T2-based structures
with calculated CH4 diffusion coefficients at innite dilution
using the MD simulations. The simulations were conducted at
298 K with a time step of 1 fs for a total of 5 million cycles, with
1000 cycles used for the initialization and 10 000 cycles for
equilibration. DREIDING force eld was used with the Lorentz–
Berthelot mixing rule and a cut-off distance of 13 Å. The CH4

molecule was modeled as a single atom. Prior to the simula-
tions, 30 CH4 molecules were randomly introduced into the
pores of crystals. The mean square displacement (MSD) of gas
molecules during 1–5 ns is used to calculate the diffusion
coefficient through Einstein's relation.53 All these simulations
were carried out at NVT ensemble using RASPA2 package.56

4.3.4 Charge mobility. The charge carrier mobility values in
this dataset were obtained from previous work10 and were calcu-
lated using the Marcus theory of charge transport. The dataset is
based on crystal structure prediction (CSP) studies, with the
studied molecules including pentacene and azapentacenes. The
charge carrier mobility calculations were restricted to crystal
© 2025 The Author(s). Published by the Royal Society of Chemistry
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structures within a 7 kJ mol−1 energy range of the global
minimum on the energy-density landscapes, capturing low-
energy polymorphs most likely to be observed experimentally.

4.3.5 Bulk modulus. Bulk modulus calculations were per-
formed for sets of predicted crystal structures of 25 small,
organic molecules from a recent large-scale CSP study.15 To
include a diverse set of molecules, these were selected by
farthest-point sampling of the 1007 molecules from15 using
Euclidean distances between 1024 bit extended connectivity
ngerprints57 for evaluating molecular similarity. Calculations
were performed for all crystal structures within 12 kJ mol−1 of
the global energy minimum on each CSP landscape. Bulk
moduli were calculated from a Voigt–Reuss–Hill average over
elastic stiffness and elastic compliance tensors. Elastic
constants were calculated using rigid-molecule calculations in
the DMACRYS soware52,58 with intermolecular interactions
modelled using the FIT59 exp-6 atom–atom force eld and
atomic multipole electrostatics from Distributed Multipole
Analysis60 of B3LYP/6-311G** calculated molecular charge
densities. Any crystal structures not satisfying Born stability
criteria were removed from the dataset, resulting in a nal set of
6087 crystal structures.

4.3.6 D-E. The training target, D-E, represents the lattice
energy difference between DFT (B86bPBE + XDM) and force
eld (FIT + DMA) accuracy. Following the approach in the
original paper,15 which includes 1000 CSP landscapes, we split
the dataset by selecting 10 crystal structures from each of
around 900 landscapes for training and validation, while about
100 landscapes, with 10 structures each, were reserved as a test
set. An exclusion of duplicate structures was applied that led to
a nal dataset of 11 458 structures.
4.4 Training details

For pre-training, we randomly split the 706 126 molecular
crystal dataset with a train-validation ration of 90%:10%.
Consistent with BERTBASE,28 the transformer encoder in MCRT
adopts L = 12, H = 768, and A = 12, where L represents the
number of layers, H the hidden size, and A the number of self-
attention heads. The model was trained for 50 epochs with
a batch size of 512. Due to the large pre-training dataset, we
selected a relatively large batch size to ensure stable gradient
updates. The decision to train for 50 epochs was empirically
determined from MCRT's training curves (reported in Fig. S4†),
which indicated that the model training converged aer 40
epochs. The AdamW optimizer with a learning rate of 10−4 and
weight decay of 10−2 was used.37 The learning rate was warmed
up during the rst 5% of the total epoch and was then linearly
decayed to zero for the remaining epochs. For the SEP task we
assigned higher weights to the elements with fewer occurrences
due to the great variance in the frequency of the occurrence of
different symmetry elements. The individual weights are
calculated as follows:

wðxiÞ ¼ 1

lnð3þ xiÞ (1)
© 2025 The Author(s). Published by the Royal Society of Chemistry
where w(xi) is the weight of element i, xi is the frequency of
element i and e (e $ 1) is a parameter to adjust the weight
distribution which was set to 1.1 to avoid extremely large
weights. The resolution of the persistence image during
training was set to 50 × 50 with a patch size of 5 × 5 in accor-
dance to previous studies.21,51

For ne-tuning, all datasets (except for D-E) were randomly
split with a train-validation-test ration of 80%:10%:10%. The D-E
dataset was split according to the original paper.15 By initializing
a single dense layer to the [CLS] token, all model weights are ne-
tuned to predict desired properties for 50 epochs with a batch size
of 32. All other settings are the same as in the pre-training step.
4.5 Baselines and ablations

We test the prediction performance of MCRT against a wide
range of baselines and state-of-the-art methods. These include.

– Random forest (RF): A robust ensemble learning algorithm
that aggregates the predictions of multiple decision trees, typically
leading to enhanced generalisation performance by reducing
overtting and variance in predictive modeling tasks.44

– Kernel Ridge Regression (KRR): KRR integrates ridge
regression with the kernel trick, enabling it to perform
nonlinear regression in high-dimensional feature spaces while
controlling for model complexity through regularisation.45

– Crystal Graph Convolutional Neural Network (CGCNN):
CGCNN represents crystalline materials as graphs, where atoms
serve as nodes and bonds as edges, and learns material prop-
erties by applying convolutional operations over the graphs.13

– Atomistic Line Graph Neural Network (ALIGNN): ALIGNN
enhances conventional graph neural networks by incorporating
bond angle information from line graphs, thereby improving
the model's capability to predict complex material properties
with higher accuracy.39

– Crystal Twins (CT): CT is a self-supervised pre-trained
model for crystalline material property prediction, using twin
CGCNNs to learn robust representations from large unlabeled
datasets, which are then ne-tuned for specic tasks.36

For descriptor-based models, the Smooth Overlap of Atomic
Positions (SOAP) descriptor was used due to its universality.16

The parameters for the SOAP descriptor were set as follows:
a cutoff for the local region of 4.0 Å, 6 radial basis functions, and
a maximum degree of spherical harmonics of 6. RF and KRR
implemented in scikit-learn61 were adopted, and the hyper-
parameters were tuned using grid search. For RF, the number of
trees was searched from 10 to 1000. For KRR, the regularization
strength u was searched from 0.001 to 100. For Graph Neural
Networks (GNNs), CGCNN was trained with the following
hyperparameters: 32 batch size, 100 epochs, 5 message passing
layers, 1 hidden layer aer pooling, 64 hidden atom features in
message passing layers. ALIGNN was trained with the following
hyperparameters: 32 batch size, 100 epochs, 4 message passing
layers, 1 hidden layer aer pooling, 256 hidden atom features in
message passing layers, in line with the original paper.39 For the
crystal twins pre-trained model (CT), the same ne-tuning
hyperparameters as the original paper were used (128 batch
size, 200 epochs, 3 message passing layers).36
Chem. Sci., 2025, 16, 12844–12859 | 12855

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc00677e


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
m

aj
 2

02
5.

 D
ow

nl
oa

de
d 

on
 8

.1
.2

02
6 

4:
41

:5
3 

e 
pa

ra
di

te
s.

 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Additionally, the following variants of MCRT were included
in the ne-tuning comparisons to assess the importance of the
different learning components of the proposed framework.

– MCRTp: The complete architecture of MCRT used directly
for prediction without pre-training.

– MCRTi: The architecture of MCRT without persistence
image modality input module.

– MCRTa: The architecture of MCRT using absolute posi-
tional embeddings instead of relative ones.

Both MCRTi and MCRTa underwent the same pre-training
process as MCRT. For the latter, the absolute positional input
features are processed as in ref. 27, that is by employing BERT's
native positional embedding module to embed each of the
three-dimensional atomic coordinates separately, and eventu-
ally summing them up.
4.6 The electron density difference analysis

Periodic DFT calculations, including the electron density calcula-
tion, were carried out within the plane-wave pseudopotential
formalism, using the Vienna ab initio simulation package (VASP)
code version 5.4.4.62 Projector augmented-wave (PAW)method was
applied to describe the electron-ion interactions.63 Generalized
gradient approximation (GGA) with the Perdew–Burke–Ernzerhof
(PBE) exchange-correlation functional was adopted to treat elec-
tron interaction energy.64 Grimme's semi-empirical DFT-D3
scheme with Becke–Johnson damping functions was used here
to give a better description of interactions.65–67 A kinetic-energy cut-
off of 600 eV was used to dene the plane-wave basis set. The
electronic Brillouin zone was integrated with the smallest allowed
spacing between k-points (KSPACING) being 0.4 Å−1, and the
generated grid was centered at the G-point. The convergence
threshold for self-consistency was set to 10−6 eV during total
energy and force calculations.

The electron density difference (EDD) plots were generated
by subtracting the electron densities of each isolated molecule
from the electron density of the entire crystal:

Dr ¼ rcrystal �
XN

i¼1

rmoleculei
(2)

where rcrystal is the electron density of the crystal, and rmoleculei

represents the electron density of the i-th isolated molecule in
the crystal.
Data availability

Source data and datasets used in this work, including reference
codes of molecular crystals screened from the CSD, are available
via Figshare at https://doi.org/10.6084/m9.gshare.27844302.
Additionally, we provide pre-trained MCRT model and ne-
tuned versions for all datasets, accessible via Figshare at
https://doi.org/10.6084/m9.gshare.27822705. The MCRT
library is available at https://github.com/fmggggg/MCRT. For
ease of use, pre-dened Apptainer images are available on
Figshare at https://doi.org/10.6084/m9.gshare.26390275. To
ensure reproducibility, all results in this paper are obtained
12856 | Chem. Sci., 2025, 16, 12844–12859
from version 1.0.2 of the MCRT library, which is available at
https://pypi.org/project/MCRT-tools/1.0.2.
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