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As the global consumption of plastics keeps increasing, the accumulated plastics in the natural environment
have threatened the survival of human beings. Photoreforming, as a simple and low-energy way, could
transform wasted plastic into fuel and small organic chemicals at ambient temperature. However, the
previously reported photocatalysts have some drawbacks, such as low efficiency, containing precious or
toxic metal. Herein, a noble-free, non-toxic, and easy prepared mesoporous Znln,S, photocatalyst has
been applied in photoreforming of polylactic acid (PLA), polyethylene terephthalate (PET) and
polyurethane (PU), generating small organic chemicals and H, fuel under simulated sunlight. Plastic was
degraded into small organic molecules after the pretreatment, which futher acted as the substrate for
photoreforming. Mesoporous Znln,S, exhibits high H, production efficiency, strong redox ability, and
long-term photostability. Furthermore, mesoporous Znln,S4 could overcome the hindrances of dyes and
additives of realistic wasted plastic bags and bottles with high decomposition efficiency, providing an
efficient and sustainable strategy for the upcycling of wasted plastics.

Introduction

Global plastic manufacturing reached 368 million metric tons
in 2019, and it is expected to rise further in the following
years.'” Plastics generally have a relatively short service period,
and most of the used plastics have become waste and accu-
mulate in landfills or in the natural environment.* Due to their
strong chemical inertness, the spontaneous degradation
process of plastic waste requires up to centuries, which will
cause serious global environmental problems.>” Plastic pollu-
tion not only leads to a global environmental issues, but also
a waste of precious resources. Most plastics are derived from
fossil fuels, and it is estimated that recycling all plastic waste
may save 3.5 billion barrels of oil each year.?

There have been four main strategies for treating waste
plastics, including landfill, incineration, mechanical and
chemical recycling.”"> Among which, incineration is widely
used to treat plastic waste, generating heat energy within the
combustion process, which could be further transformed to
other useful energy such as electric energy."* However,
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incineration needs massive energy input, high reaction
temperature and the products are difficult to be separated.
Therefore, developing new strategy to transform waste plastics
into valuable products under mild conditions are urgently
required.

Photoreforming means H, can be generated from organic
substrate and water under the sunlight with a photocatalyst.**
The photogenerated electrons from the photocatalyst can
reduce water to yield H,." H, is a valuable product and it has
a high demand in the fields of agriculture, pharmacy, chemical
industry, and renewable energy. The first example of photo-
reforming was TiO,/Pt photocatalyst,’® which could reform
polyvinyl chloride (PVC) to H, in water at room temperature.
More recently, Reisner and co-workers reported photoreforming
of real-world plastics to generate H, and fine chemicals by CdS/
CdO," and Ni,P|CN,."**® More and more photocatalyst have
been developed and applied in photocatalytic conversion of
wasted plastics to value-added products, such as Nb,Os," Ag,0/
Fe-MOF,*® MoS,/Cd,Zn, ,S,** etc.*>>* However, the existing
photocatalysts present some disadvantages, for example,
contains toxic Cd element, wide ban gap and need noble metal
to generate H,. It is a big challenge to develop a noble-free, non-
toxic, and high efficiency photocatalyst for photoreforming of
plastics to generated H, and other valuable products.

As a visible light-activated layered ternary metal chalco-
genide photocatalyst, ZnIn,S, possesses narrow band gap (2.28
eV), no toxic element, and simple preparation method, thus
exhibits excellent performance,*® especially in the field of
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photocatalysis, such as pollutant removal, hydrogen evolution,
and reduction of CO,.?”** Herein, we have realized an efficient
visible light driven reforming of plastic waste to H, and small
organic molecules by mesoporous ZnIn,S,. The photocatalyst
mesoporous ZnIn,S, was prepared through the low temperature
hydrothermal method.**?** Beside PET, PLA, and PU, a variety of
realistic waste plastic including plastic bags and bottles could
be compatible within the transformation. Compared to the re-
ported photocatalyst, mesoporous ZnlIn,S, exhibits higher H,
production efficiency from PLA under simulated sunlight. The
noble-free, simply prepared and nontoxic mesoporous ZnIn,S,
photocatalyst provides a new strategy for the sustainable upcy-
cling of waste plastics.

Experimental section

Preparation of mesoporous ZnIn,S,

In a typical procedure,* 1.5 mmol of Zn(CH3;COO),-2H,0 and
3.0 mmol of InCl; were added into 250 mL deionized water (DI)
and stirred for 30 min. After that, 8.0 mmol of thioacetamide
(TAA) was added to the solution and stirred for another 30 min.
The mixed solution was heated to 95 °C and refluxed for 5 h. The
resulting precipitation was collected by centrifugation, rinsed
with ethanol and DI water for several times, and finally re-
dispersed into 100 mL of DI water. The dispersion was ultra-
sonicated continuously for 30 min. Mesoporous ZnIn,S, was
obtained after cryodesiccation (Scheme 1).

Preparation of ZnIn,S,

ZnIn,S, was prepared following the previous report® with
a little modified. 50 mL of glycerol was added into 200 mL H,O
(pH = 2.3) and the solution was stirred for 30 min. 2.36 mmol of
ZnCl,, 4.7 mmol of InCl; and 9.4 mmol of TAA was added into
the above solution. The mixture was stirred for 30 min and
maintained at 80 °C for 2 h under continuous stirring. After
cooling to room temperature, the product was collected by
centrifugation and rinsed with ethanol several times. ZnIn,S,
was obtained after drying in a vacuum at 60 °C.

Sample characterization

The crystallographic phase of the prepared sample was deter-
mined by powder X-ray diffraction (Smartlab, Rigaku). The
morphologies of the prepared sample were observed by a scan-
ning electron microscope (Zeiss, Gemini 500) and a trans-
mission electron microscope (FEI, Tecnai G2 F30). The specific
surface areas of the prepared sample were measured by
nitrogen sorption at 77 K on a surface area and porosity analyzer
(Micromeritics, ASAP2020M) and calculated by the Barrett-
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Scheme 1 Synthesis scheme of mesoporous Znln,S,.
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Joyner-Halenda (BJH) method. X-ray photoelectron spectros-
copy (XPS) measurement was recorded on a Thermo Fisher
Scientific Nexsa spectrometer (Al Ko, 1486.6 eV). The XPS
spectrum was calibrated with respect to the binding energy of
the adventitious C 1s peak at 284.8 eV. The UV-vis diffuse-
reflectance spectrum (UV-vis DRS) was recorded with a UV-vis
spectrophotometer (Shimadzu UV-3600) assembled with an
optical integrated sphere using BaSO, as the reference. Photo-
luminescence (PL) spectroscopy and time-resolved PL decay
spectra were recorded on a spectrophotometer (Edinburgh
FLS980). Electrochemical measurements were recorded on an
electrochemical workstation (Chen Hua CHI660E) using
a three-electrode system with a 0.5 M Na,SO, solution as the
electrolyte. A fluorine-doped tin oxide (FTO) conductive glass,
the conductive side of which was coated with a thin sample film
by the spin coating method, an Ag/AgCl electrode, and a plat-
inum electrode were used as the working electrode, reference
electrode, and counter electrode, respectively. Mott-Schottky
analyses was measured in the dark using the impedance
potential mode. Photocurrent spectral data was recorded under
the manual control of ON/OFF with a 300 W xenon lamp as the
excitation light source.

Substrate pretreatment

In a typical procedure, the plastic samples were first frozen and
crushed. Then, the aqueous KOH (2 M) and plastic power
(50 mg mL~") were added to the vial in sequence, stirring at 40 ©
C for 24 h. The mixture was used for photoreforming as below.

Photoreforming experiments

Generally, the above solution was transferred to a 50 mL Pyrex
glass photoreactor. 7.5 mg of catalyst and 2.5 mL of DI water
were then added, and the final conditions were 25 mg mL ™!
substrate, 5 mL of 1 M aqueous KOH and 2.5 mg mL™" catalyst.
The atmosphere of the photoreactor was replaced with N, using
an atmosphere controller (Perfect Light, AC1000). The photo-
reactor was irradiated by a solar light simulator (CEAULight,
150 mW cm %) equipped with an air mass filter (AM 1.5G). All
samples were kept at 25 °C with continuous stirring during
irradiation for 12 h. The accumulation of H, was analyzed by
gas chromatography on an GC7900 equipped with a thermal
conductivity detector using N, as the carrier gas. The liquid
product was centrifuged. The obtained supernatant 0.15 mL
was mixed with D,O (0.3 mL) and maleic acid deuterium oxide
solution (0.1 mL, 50 mg mL "), which was detected by a nuclear
magnetic resonance spectroscopy (Bruker AVANCE, 'H NMR)
for qualitative and quantitative analysis.

EPR

EPR spectra were recorded on an EPR spectrometer (JEOL, JES-
FA2000). In the trapping of reactive species, a quartz flat cell
(Wilmad, WG-810-A) was used to conduct the control experi-
ments by using a free radical trapping agent DMPO.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Results and discussion
Photocatalyst characterization

The scanning electron microscopy (SEM) images show that both
mesoporous ZnIn,S, (Fig. 1a) and ZnIn,S, (Fig. 1b) have nano-
sheet structure. The morphology of ZnIn,S, is flower-like hier-
archical microsphere composed of plenty of nanosheet.
Comparing with ZnIn,S,, mesoporous ZnlIn,S, possesses bigger
pore but less agglomerated phenomena. The transmission
electron microscopy (TEM) image reveals that mesoporous
ZnIn,S, have lots of pores, which were formed during cry-
odesiccation (Fig. 1c). Energy-dispersive spectroscopy (EDS)
elemental mapping confirms that Zn (Fig. 1d), In (Fig. 1e) and S
(Fig. 1f) are uniformly distributed across the mesoporous
ZnlIn,S,.

XRD patterns show that the diffraction peaks of mesoporous
ZnlIn,S, and ZnIn,S, are 21.2°, 27.5° and 47.3°, corresponding
to the crystal faces of (006), (102) and (110), respectively
(Fig. 2d). These diffraction characteristics can be ascribed to
hexagonal ZnIn,S, (JCPDS card no. 04-009-4787). However, they
show different preferred crystal faces due to the different
preparation methods. XPS analysis shows that Zn 2p peaks of
the mesoporous ZnIn,S, and ZnIn,S, appeared at 1045 and
1022.1 eV (Fig. 2a), In 3d peaks at 452.65 and 445.15 eV (Fig. 2b)
and S 2p peaks at 161.9 and 163.0 eV (Fig. 2c). It suggests that
mesoporous ZnIn,S, and ZnIn,S, have the same valence state.

The N, adsorption-desorption isotherms curves (Fig. 3a)
show that the curves of ZnIn,S, belong to H4-type hysteresis
loops, while the curves of mesoporous ZnIn,S, belong to H3-
type hysteresis loops, indicating that mesoporous ZnIn,S, is
a mesoporous material with narrow cracks and ZnIn,S, is a slit
pore material formed by the accumulation of lamellar particles,
which is consistent to the result of SEM images. Besides, pore
size distribution plots confirm that the pores of mesoporous
ZnIn,S, are bigger than ZnIn,S, (Fig. 3b), which affect the effi-
ciency of photoreforming of plastics.

Photophysical and electrochemical properties of the photo-
catalysts play an important role in the photocatalytic activity.*

Fig. 1 SEM images of (a) mesoporous Znin,S4 and (b) Znln,S,; TEM
image of (c) mesoporous ZnInyS4 and (d) Zn, (e) In and (f) S atom
element mapping of mesoporous Znln,Sy.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) Zn 2p, (b) In 3d, and (c) S 2p XPS spectra of ZnIn,S4 and
mesoporous ZnlnyS,4. (d) XRD profiles of Znln,S, and mesoporous
Znln,S4.

The UV-vis diffuse-reflectance spectrum (UV-vis DRS) shows
that both mesoporous ZnIn,S, and ZnIn,S, can absorb visible
light, and the absorption edge of mesoporous ZnIn,S, (Aeage =
554 nm) is located at longer wavelength than that of ZnIn,S,
(Aeage = 516 nm), which suggest the possibility of high photo-
catalytic activity of the above materials under visible light
(Fig. 4a). To explore the energy band structures of the photo-
catalyst, Tafel plots and Mott-Schottky plots were performed.
According to Tafel plots, the band-gap energy of mesoporous
ZnlIn,S, and ZnIn,S, were 2.19 eV and 2.32 eV respectively,
which indicate that mesoporous ZnIn,S, is more efficient for
visible-light utilization than ZnIn,S, (Fig. 4a, inset). Further-
more, Mott-Schottky plots suggest that the two photocatalyst
are n-type semiconductors and the flat-band potentials of the
mesoporous ZnIn,S, and ZnIn,S, are —0.91 V (vs. Ag/AgCl) and
—0.94 V (vs. Ag/AgCl), respectively (Fig. 4b and c). Thus, the
valence band (VB) of photocatalyst could be calculated from the
band-gap energy (mesoporous ZnIn,S,: 1.28 eV, ZnIn,S,: 1.38
eV). Photocurrent measurements were also conducted to study
the ability and stability on the photogenerated charges of
mesoporous ZnIn,S, and ZnIn,S,. As shown in Fig. 4d, meso-
porous ZnlIn,S, is stronger and more stable than ZnIn,S, on the
photocurrent response, which indicates the photogenerated
charges ability of mesoporous ZnlIn,S, is better.

Typically, fluorescence spectroscopy is used to characterize
the separation efficiency of photogenerated electron hole
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Fig. 3 (a) N, adsorption—desorption isotherms and (b) pore size
distribution plots of ZnlIn,S4 and mesoporous Znin,S,.
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Fig. 5 Stead-state PL spectra of mesoporous Znin,S4 and Znin,S,.

pairs.** PL spectra of mesoporous ZnIn,S, and ZnIn,S, were
recorded at an excitation wavelength of 405 nm (Fig. 5). ZnIn,S,
shows a strong fluorescence emission peak at 490 nm, while the
fluorescence emission peak of mesoporous ZnIn,S, were nearly
quenched, which indicate that the recombination of electrons
and holes of mesoporous ZnlIn,S, was greatly hindered.

Photorefroming of plastics

The photoreforming performances of as-prepared photo-
catalysts were evaluated by the hydrogen production of plastics
reforming experiments. All conditions, including photocatalyst
concentration, substrate concentration and reaction time, were
optimized for maximal the H, production (Fig. S11). In a typical
procedure, plastics were pretreated in aqueous KOH at 40 °C
with continuous stirring for 24 h in the dark. After pretreat-
ment, the photocatalyst was added to the above solution, and
the mixture was then transferred to a Pyrex flask, purged with N,
and irradiated by simulated sun light (AM 1.5G, 150 mW cm ?)
at room temperature for certain time.

As for PLA, mesoporous ZnIn,S, exhibits higher hydrogen
production efficiency than ZnIn,S,, which was 143.6 pmol g~*
h™' and 70.4 pumol g~ h™" respectively (Fig. 6a). The different
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Fig. 6 (a) Photoreforming of PLA with mesoporous ZnIn,S, and
Znln,Sy; (b) photoreforming of different kinds of plastics; (c) photo-
reforming performances of dimers and monomers of PET and PLA;
and (d) photoreforming performances of commercial plastic bag and
bottle with mesoporous Znin,S,4 (1, 2 and 3 are parallel experiment).
Reaction conditions: photocatalyst (1.5 mg mL™Y), pretreated polymers
(25 mg mL™1), aqueous KOH (1 M, 5 mL), and simulated sunlight (AM 1.5
G, 150 mW cm 2, rt), 12 h.

performances of the two photocatalyst might be attributed to
the differences of the morphology and pores distribution, and
the lamellar structure and mesopores in mesoporous ZnIn,S,
make it exhibit better hydrogen production efficiency.
Compared with previous reports, the H, yield from photo-
reforming of PLA by mesoporous ZnIn,S, is almost eight times
higher than that over CdS/CdO, and CN,/NiP (Table 1), while
from PET is 3-fold higher than CdS/CdO, and 14-fold higher
than CN,/NiP, which shows superior H, production efficiency.

Mesoporous ZnIn,S, was further employed to a variety of
common polymers under simulated sun light. Polypropylene
(PP), polyethylene (PE) and polyacrylic acid (PA) could only
produce trace amount of hydrogen (H,), while PET, PLA and
polyurethane (PU) performance well, and the order of H,
production efficiency was PP < PE < PA < PET < PLA < PU under
the same reaction conditions (Fig. 6b). As pretreated with
aqueous KOH, the ester group of PET, PLA and PU might be

Table 1 Comparison of the photoreforming performance of PLA and
PET by different photocatalysts”

Yield (umOIHZ gsubil)

Catalyst PLA PET Reference
Mesoporous ZnIn,S, 412.1 472.3 This work
ZnIn,S, 356.6 177.7 This work
CN,|Ni,P? 59.7 £ 6.0 33.1+1.7 14
cds/cdo,’ 54.1 + 8.9 132+ 6 17

% Reaction conditions: pretreated PLA or PET (25 mg mL ') with all
catalyst except CN,|Ni,P (which used 50 mg mL '), KOH or NaOH (aq.
5 mL), catalyst (1.5 mg mL '), measurements taken after 20 h of
simulated sunlight (AM 1.5 G, 100 mW cm ™2, 1t). ” CN,|Ni,P (1.6 mg
mL ). ¢ CdS/CdO; (1 nmol).

© 2023 The Author(s). Published by the Royal Society of Chemistry
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partly decomposed under base environment, and the residue
would partial dissolve in the solutions for further photo-
reforming. It is might be the reason why PET, PLA and PU shows
higher H, production and degradation efficiency than those of
PP, PE and PA.

As for the realistic plastic wastes, which always contain dyes,
additives and many kinds of impurities, might make them more
difficult to be photocatalytic degradation than the pure one. To
evaluate the performance of the real-world plastics over meso-
porous ZnIn,S,, the photoreforming of plastic bags and plastic
bottle were conducted. As shown in Fig. 6d, the H, production
efficiency from realistic plastic bag and plastic bottle were
achieved respective in 72.2 pumol g~* h™" and 68.9 pmol g ' h™*
under the same conditions for the photocatalytic degradation in
Fig. 6b. The main component of plastic bags and bottles are PLA
and PET, respectively. Comparing the results presented in
Fig. 6b with 6d, the additives within the plastic bags and bottles
hindered their photoreforming performances significantly.

"H NMR and "*C NMR spectra (Fig. S27) of the liquid phase
product of PLA after photoreforming for 12 h indicate that PLA
was decomposed into small organic molecules, such as lactic
acid (LA), by mesoporous ZnIn,S, under simulated sun light.
Some of LA were further oxidized to pyruvic acid. As shown in
Fig. S3,f PET was transferred into ethylene glycol (EG) and
terephthalate (TPA) after the pretreatment, and the oxidation
product of EG, acetic acid and 2-hydroxyacetic acid were
detected in the liquid phase product, showing that mesoporous
ZnIn,S, has strong oxidation capacity. The quantitative analysis
results showed that the lactic acid in the solution after
pretreatment was approximately 28.3 mg, while after photo-
reforming the amount of LA increased to 61.7 mg with 4.4 mg of
pyruvic acid. Combining the result of Fig. S1(b),} it indicated
that lactic acid was generated after the pretreatment with KOH,
which was further oxidized into valuable small organic mole-
cules by mesoporous ZnlIn,S, during the photoreforming.
Besides, there is no CO, detected during the process.

The monomers and dimers of PLA and PET, including lactic
acid (LA), lactide, ethylene glycol (EG), terephthalate (TPA) and
bis(2-hydroxyethyl) terephthalate (BHET), were further applied
to investigate the photoreforming mechanism over mesoporous
ZnIn,S,. As shown in Fig. 6¢c, the H, yield from LA (105.0 pmol
g " h™") and lactide (99.0 pmol g~ * h™") were close to that from
PLA (142.8 pmol g~' h™'), which indicate that mesoporous
ZnIn,S, could decompose the ester group and further oxidize
the monomers derived from PLA to pyruvic acid. As for the
monomer and dimer of PET, the H, yield from EG (9.6 umol g~*
h™') and TPA (4.1 pmol g~ ' h™') was much lower than that from
PET (129.7 pmol g ' h™"), and the H, yield from BHET (100.8
umol g h™") was close to that from PET. It is might cause that
mesoporous ZnIn,S, could decompose the ester group of PET
and BHET, but the oxidation ability of mesoporous ZnlIn,S, is
not enough for EG or TPA. The liquid phase product of mono-
mers and dimers of PLA and PET were analyzed by "H NMR and
3C NMR as shown in Fig. $4 and S5.7

To evaluate the photostability of mesoporous ZnIn,S, in
aqueous KOH, a long-term photoreforming of PLA and PET
were conducted. According to the result, the H, yield from PLA

© 2023 The Author(s). Published by the Royal Society of Chemistry
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kept raising from the first day to the fourth day, it is because
more and more PLA were dissolved in the solution and
decomposed into oligomers and monomers for further photo-
reforming. While in the last day, the H, production rate went
down a little bit which was limited by the total amount of
substrate in the solution (Fig. 7a). As for PET, the H, yield kept
raising from the first day to the end. The total amount of H,
yield from PET is less than that from PLA after photoreforming
for 5 days and the fastest H, yield rate from PET is slower than
from PLA (Fig. 7b). It is probably because the monomers of PET,
EG and TPA, are difficult to be oxidized by mesoporous ZnIn,S,,
which limits the H, yield from PET.

Mechanism investigation

To investigate the mechanism of photoreforming of plastics,
electron paramagnetic resonance (EPR) measurement was
conducted to test free radicals,® which were trapped by
dimethyl pyrroline oxide (DMPO, radical scavenger). PLA was
used as the model substrate, reformed by mesoporous ZnIn,S,
under a N, atmosphere. Without substrate, hydroxyl radical
(-OH) and superoxide radical (-OOH) could be detected when
the mixture was irradiated by simulated sun light (Fig. 8a),
which suggest that mesoporous ZnIn,S, could generate not only
electron-hole pairs, but also free radicals with strong oxidation.
When the pretreated PLA solution was added into the above
solution, all free radicals disappeared, which suggest that PLA
could combine with the free radicals, then the oxidation reac-
tions occurred. As shown in Fig. 8b, when mesoporous ZnIn,S,
and ZnIn,S, irradiated by the simulated sun light, there were no
significant difference in the EPR spectra.

Combine with the results as shown above and refer-
ences,'*'”* the mechanism of photoreforming of plastics over
mesoporous ZnIn,S, is proposed as following: mesoporous
ZnIn,S, could absorbs simulated sun light, generating electron-
hole pairs and free radicals. Depolymerization and oxidation
reaction of PLA would take place with the combined action of
hole and free radicals generated from mesoporous ZnIn,S,. PLA
was decomposed to oligomers and monomer and further
oxidized to pyruvic acid. At the meantime, H,O combined with
the electrons on the surface of the photocatalyst could generate
pure hydrogen through reduction reaction. Through the above
reactions, plastic have been depolymerized into small organic
molecules and produce pure H,.

&

\
g

Product yield/umol,,,

20

H

H

Product yield/umol g h*!

Product yield/umol
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Time / days

(a)

(b)

Time / Days

Fig. 7 Long-term photoreforming of (a) PLA and (b) PET. Reaction
conditions: photocatalyst (1.5 mg mL™?), pretreated polymers (25 mg
mL™1), aqueous KOH (1 M, 5 mL), and simulated sunlight (AM 1.5 G, 150
mwW cm™2, rt).
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Fig. 8 EPR spectra of free radicals captured by DMPO of (a) meso-
porous ZnlIn,S, under simulated solar light with or without substrate;
(b) mesoporous Znln,S,4 and ZninyS4 under simulated solar light
without substrate (c) simulation of EPR spectra of free radicals
captured by DMPO of mesoporous Znln,Sy; (d) proposed mechanism
for photoreforming of PLA by mesoporous Znin,S,.

Conclusions

In this work, we have realized the recycling and utilization of
plastic waste through the green and environmental-friendly
photorefroming over mesoporous ZnIn,S,. PLA, PET and PU
were firstly depolymerized into oligomers and monomers with
the help of KOH. And driven by the visible light, oligomers
could be depolymerized into small organic molecules, which
was further oxidized by mesoporous ZnIn,S, at room tempera-
ture with hydrogen generated. The strong redox ability, efficient
separation of photogenerated electron hole pairs and long-term
photostability of the catalyst promoting the reforming of plas-
tics in high efficiency. Albeit hindered by dyes and additives, the
plastic bags and bottles could also be reformed efficiently. No
carbon dioxide was detected during the photocatalytic process.
The noble-free, easy-preparation and non-toxic ZnIn,S, photo-
catalyst provides an efficient and sustainable strategy for the
plastic waste upcycling.
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