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benign lung diseases†
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Min Fan,a Alain Wuethrich, *d Matt Trau *df and Jing Wang *a

The development of a minimally invasive technique for early-stage

lung cancer detection is crucial to reducing mortality. Phenotyping

of tumor-associated extracellular vesicles (EVs) has the potential for

early-stage lung cancer detection, yet remains challenging due to

the lack of sensitive, integrated techniques that can accurately detect

rare tumor-associated EV populations in blood. Here, we integrated

gold core–silver shell nanoparticles and nanoscopic mixing in a

microfluidic assay for sensitive phenotypic analysis of EVs directly in

plasma without EV pre-isolation. The assay enabled multiplex detec-

tion of lung cancer-associated markers PTX3 and THBS1 and canonical

EV marker CD63 by surface-enhanced Raman spectroscopy, providing

a squared correlation coefficient of 0.97 in the range of 103–

107 EVs mL�1 and a limit of detection of 19 EVs mL�1. Significantly,

our machine learning-based nanostrategy provided 92.3% sensitivity

and 100% specificity in differentiating early-stage lung cancer from

benign lung diseases, superior to the CT scan-based lung cancer

diagnosis (92.3% sensitivity and 71.4% specificity). Overall, our integrated

nanostrategy achieved an AUC value of 0.978 in differentiating between

early-stage lung cancer patients (n = 28) and controls consisting

of patients with benign lung diseases (n = 23) and healthy controls

(n = 26), which showed remarkable diagnostic performance and great

clinical potential for detecting the early occurrence of lung cancer.

1. Introduction

Lung cancer is one of the most common forms of cancers and
the leading cause of cancer-related deaths worldwide.1,2

Despite significant advances in tumor management in recent
years, lung cancer still has a high mortality rate because most
patients are diagnosed at advanced stages (stage III/IV).3 Early
diagnosis of lung cancer when the tumor is small and typically
asymptomatic could significantly reduce mortality.4 Low-dose
computed tomography (LDCT) is the only recommended
screening for lung cancer, but can only provide limited infor-
mation (e.g., size and opacity) of the lung tissue. Furthermore,
LDCT is challenging to assess if a nodule is malignant or
benign, which has led to a high number of false positives.
To confirm the initial LDCT finding, additional testing based
on invasive tissue sampling is required, which has substantial
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New concepts
A nanostrategy that combines bright core–shell-nanostructured surface-
enhanced Raman scattering probes, a nanomixing chip, and machine
learning was proposed for the direct readout of trace populations of
tumor-associated extracellular vesicles (EVs) for early lung cancer
detection. This nanostrategy enabled the direct detection of EVs from
clinical plasma samples without pre-isolation and enrichment of EVs in a
miniaturized chip. In a head-to-head comparison against clinical
computed tomography (CT), our nanostrategy correctly differentiated
early malignant and benign nodules without requiring invasive
bronchoscopy which is frequently used to confirm diagnosis after an
initial CT scan. The generated EV phenotypes of patients revealed
intrapatient heterogeneity that could potentially assist in accurate early
lung cancer screening and treatment selection.
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risks for patients. Thus, developing a blood-based assay for
early-stage lung cancer detection, particularly with the cap-
ability of differentiating benign from malignant lung diseases
is to date an unmet clinical need.

Tumor-associated extracellular vesicles (EVs) could serve as
blood markers for cancer detection.5–9 Tumor-associated EVs
are secreted into the bloodstream by all cancer cells within
tumors and can be minimal-invasively sampled by blood
collection. The biological component of tumor-associated EVs
has been shown to reflect the cell of origin, rendering EV
phenotyping promising for early lung cancer detection.10

However, EV phenotypic characterization via conventional
methods is lengthy and requires large amounts of samples,
which limits its further clinical applications. Additionally, the
amount of tumor-associated EVs in circulation might be extre-
mely low when the tumor is small and localized to one area;
therefore, a sensitive platform is essential for early lung cancer
detection.

To enable sensitive phenotypic characterization of tumor-
associated EVs in plasma, we used antibody-conjugated and
Raman reporter-embedded gold core–silver shell nanoparticles
(Au@Ra@Ag NPs) for EV labeling, combined with a nano-
mixing chip for enhanced antibody–antigen interaction.
Au@Ra@Ag NPs exhibited strong and stable surface-enhanced
Raman spectroscopy (SERS) signals due to the enhanced electro-
magnetic field and the shell protection (minimizing reporter
detachment and signal interferences from nontargets in complex
plasma samples), respectively.11,12 The circulating nanomixing
forces increased the collision frequency of EVs and Au@Ra@Ag
NPs, while shearing off the non-specific binding towards the chip
surface.13 In combination with spherical Au NPs as SERS labels,
this nanomixing chip has been previously applied to differentiate
serum EV phenotypes between early-stage melanoma patients and
healthy controls.5

In addition to the challenge of sensitive EV phenotyping, the
differentiation between early-stage lung cancer and benign
lung diseases might be more challenging given the lack of
clinically validated lung cancer-specific EV markers. Machine
learning has attracted extensive attention for biomedical appli-
cations because it can classify large and complicated data based
on patterns that are otherwise not easily recognizable. A typical
example includes the application of machine learning to extract
the RNA signature of EVs for cancer diagnosis.14 To enable the
accurate recognition of subtle differences between cancer and
benign diseases, different machine learning algorithms were
tested and applied to maximize the separation between early-
stage lung cancer and benign lung diseases and to provide an
objective cancer diagnosis that is less likely to be biased by
subjective factors. These machine learning algorithms included
linear discriminant analysis (LDA), partial least squares-discri-
minant analysis (PLS-DA), support vector machine (SVM), mul-
tiple logistic regression (MLR), and K-nearest neighbors (KNN).

Herein, we set out to evaluate the clinical performance of our
EV phenotyping nanostrategy—combining Au@Ra@Ag NPs,
a nanomixing chip, and machine learning—for differentiating
early-stage lung cancer and benign lung diseases, without EV

isolation and purification. We strategically sought to charac-
terize two reported protein markers on the plasma EV surface,
including long pentraxin-3 (PTX3) and thrombospondin 1
(THBS1). Particularly, PTX3 and THBS1 were identified as
potential markers for lung cancer diagnosis given their higher
levels in plasma or EVs derived from lung cancer patients and
healthy controls.15–18 As recommended by the International
Society for Extracellular Vesicles (ISEV),19 CD63 as one of the
most common EV markers was used to confirm the specific
capture of EVs. We did not use CD63 as the capture biomarker
given that CD63 is widely expressed in EVs derived from normal
cells, which might saturate chips with non-target EVs. The
nanostrategy was tested in a clinical cohort composed of 28
early-stage lung cancer patients, 23 patients with benign lung
diseases, and 26 healthy controls. A head-to-head comparison
of our nanostrategy against CT scans was performed in patients
with early malignant and benign nodules.

2. Results and discussion
2.1. Core–shell nanoparticle characterization

To enable sensitive target detection, Au@Ra@Ag NPs were
synthesized and used as SERS nanotags for enhanced signal
readouts. As indicated in Fig. 1(A), Raman reporters served as
anchors for the deposition of Ag atoms around the surface of
Au cores. To confirm the successful synthesis of Au@Ra@Ag
NPs, energy dispersive spectroscopy (EDS), UV-vis spectrometry,
and transmission electron microscopy (TEM), were applied for
characterization. The EDS analysis in Fig. 1(B) indicated the
spatial distribution of elements Au (from the Au core), S (from
the embedded Raman reporter molecule), and Ag (from the Ag
shell), indicating the successful embedding of Raman reporters
between the Au core and Ag shell. We further characterized the
localized surface plasmon resonance (LSPR) bands of Au NPs,
Au NPs with Raman reporters (Au@Ra NPs), and Au@Ra NPs
with Ag shells (Au@Ra@Ag NPs) (Fig. 1(C)). We found that
the conjugation of 2-mercapto-4-methyl-5-thiazoleacetic acid
(MMTAA) Raman reporters to Au NP surfaces resulted in a
slight blueshift and an increase in absorbance at high wave-
lengths (650–700 nm). In contrast, neither a blueshift nor the
appearance of new LSPR bands were observed after Au
NP surface modification with 4-mercaptobenzoic acid (MBA)
and 2,3,5,6-tetrafluoro-4-MBA (TFMBA) reporters. Compared
to Au@Ra NPs, a blueshift of LSPR and new LSPR peaks at
378-398 nm were further observed in the UV-vis spectra of
Au@Ra@Ag NPs (Fig. 1(C)), suggesting the formation of Ag
shells.20 Representative TEM images showed the core–shell
nanostructure of Au@TFMBA@Ag NPs (Fig. 1(D)). To investi-
gate the thickness of Ag shells, we performed nanoparticle
tracking analysis (NTA) before and after Ag coating. The size
distributions of Au@TFMBA and Au@TFMBA@Ag NPs are
shown in Fig. S1 (ESI†), with average diameters of 34.4 � 0.4
and 37.4 � 0.1 nm, respectively. The thickness of Ag shells was
thus about 3 nm, which was consistent with the EDS mapping
(Fig. 1(B)) and the TEM image (Fig. 1(D)). It has been previously
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reported that SERS signals will increase with the thickness of
Ag layers.21,22 Compared to Au@TFMBA NPs, Au@TFMBA@Ag
NPs generated 3–4 times stronger Raman signals due to a
plasmonic coupling effect (Fig. 1(E)), which was essential for
the sensitive detection of tumor-associated EVs in early-stage
lung cancer patient plasmas. We further evaluated the signal
brightness of Au@TFMBA@Ag NPs by comparing with the

Raman signal of 20 mM TFMBA molecules in water (Fig. S2,
ESI†), yielding an enhancement factor of 4.74 � 105. Details for
the calculation of the enhancement factor are indicated in the
ESI.† Additionally, the Ag shell also helped to minimize the
spectral cross-talk in multiplex detection and interferences of
non-targets in complex clinical plasma samples.23 Au@Ra@Ag
NPs were further functionalized with antibodies for specifically

Fig. 1 Preparation and characterization of SERS nanotags. (A) The synthesis of Au@Ra@Ag NPs using Raman reporter molecules as anchors. (B) EDS
mapping of Au@TFMBA@Ag NPs. (C) UV-vis absorption spectra of Au NPs, Au@Ras NPs, and Au@Ras@Ag NPs. (D) A TEM image of Au@TFMBA@Ag NPs.
(E) SERS spectra of Au@TFMBA NPs and Au@TFMBA@Ag NPs in water. (F) SERS signals of Au@Ra@Ag NPs with antibody-Raman reporter pairs of CD63-
MBA, PTX3-MMTAA, and THBS1-TFMBA.
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targeting EV surface proteins, with antibody-Raman reporter
pairs of CD63-MBA, PTX3-MMTAA, and THBS1-TFMBA. Their
corresponding SERS signals were exhibited in Fig. 1(F),
showing characteristic peaks at 1080, 1287, and 1632 cm�1,
respectively (Fig. 1(F)).

2.2. Working scheme

Fig. 2 shows the schematic workflow of integrating Au@Ra@Ag
NPs, the nanomixing chip, and machine learning for extracting
lung cancer-associated EV phenotypes for early-stage lung cancer
detection. Briefly, tumor-associated EVs were first immuno-
enriched from complex plasma samples by the nanomixing chip,
followed by on-chip, multiplex barcoding of EV surface proteins
for SERS readouts. The nanomixing chip was arrayed with multi-
ple pairs of asymmetric gold electrodes consisting of inner
circular electrodes and outer ring electrodes (Fig. S3, ESI†). The
application of an alternating current electric field induces a
circulating nanomixing force on the electrode surface. As illu-
strated in Fig. 2(A), 50 mL of diluted plasma (5-fold dilution with
phosphate buffer saline (PBS) buffer) was directly loaded onto the
electrodes without EV pre-isolation. To specifically enrich lung
cancer-associated EVs, the electrodes were functionalized with
capture antibodies against PTX3 and THBS1 (Fig. 2(A)-i). The
plasma EVs were immuno-captured (Fig. 2(A)-ii) and then subject
to simultaneous 3-plex SERS nanotag labeling (Fig. 2(A)-iii). In the
process of EV capture and labeling, the circulating nanomixing
force was applied to increase the collisions of EVs and SERS
nanotags, as well as reduce nonspecific binding on the electrode
surface.5,24

After EV labeling, on-chip SERS mapping was performed as
signal readouts (Fig. 2(B)-i). The SERS mapping image was a
false-color image (Fig. 2(B)-ii) and was established based on the
characteristic peak signals of SERS nanotags (CD63-MBA, PTX3-
MMTAA, and THBS1-TFMBA SERS nanotag). The signal dots on

SERS mapping images indicated the presence of the corres-
ponding SERS nanotag-targeted EVs. We hypothesized that the
percentages of signal dot areas to mapping areas (referred to as
‘‘SERS signatures’’) positively correlated with the expression
levels of the corresponding markers on EV surfaces (Fig. 2(B)-iii).
Because EVs reflect the cell of origin,10 the underlying EV features
that could differentiate early-stage lung cancer patients from
patients with benign lung diseases and healthy controls were
analyzed using machine learning (i.e., LDA, PLS-DA, SVM, MLR,
and KNN) (Fig. 2(B)-iv).

We hypothesized that the difference in EV phenotypes
between benign and early malignant lung lesions would be
small, thus requiring a highly sensitive assay for analysis.
Our assay provided three key features to address the clinical
challenge of EV phenotyping for lung cancer screening: (i) core–
shell NPs as SERS nanotags to achieve multiplex and sensitive
EV phenotyping with strong and stable Raman signals; (ii) a
parallelized nanomixing device for enhanced capture and
identification of rare tumor-associated EV populations via
introducing a circulating nanoscopic flow to increase the colli-
sions of EVs and SERS nanotags; and (iii) improved patient
classification accuracy using machine learning. We expected
that these unique features of our assay would enable reliable
assessment of proteomic phenotypes of lung cancer-associated
EVs for sensitive, accurate detection of early-stage lung cancer
patients (Fig. 2(B)-v).

2.3. Assay specificity

To investigate the assay specificity in detecting lung cancer-
associated EVs, we analyzed EVs present in the conditioned
culture media (CCM) of the lung cancer cell line A549. To evaluate
the degree of non-specific binding that commonly occurs in
immunoassays, the nanomixing chip without capture antibodies
and SERS nanotags without detection antibodies were used as

Fig. 2 Schematic diagram for the identification of lung cancer-associated EV phenotypes applied for lung cancer screening. (A) Plasma samples were
loaded onto the nanomixing chip for specific capture and labeling of lung cancer-associated EVs. (i) The electrode of the nanomixing chip was
functionalized with antibodies against PTX3 and THBS1 for EV capture. (ii) EVs were captured and (iii) labeled by 3-plex SERS nanotags under the
circulating nanomixing forces. (B) After EV labeling, (i) on-chip SERS mapping was performed to read out the SERS nanotags. (ii) The false-color SERS
mapping image was established based on the characteristic peak intensities of SERS nanotags that were tagged to the EV surface proteins. (iii) The
corresponding SERS signature was plotted by calculating the percentages of signal dot areas to mapping areas. Machine learning was applied for (iv) the
extraction of lung cancer-associated EV phenotypes and (v) the classification of lung cancer patients and controls (patients with benign lung diseases and
healthy controls).
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controls. To mimic EVs released from healthy lung tissue, we also
studied the phenotype of EVs derived from the lung epithelial cell
line BEAS-2B. The presence of EVs in CCM as well as their physical
properties were first evaluated using NTA and TEM. Fig. 3(A)
shows the size distribution of particles in CCM with a median size

of 204.5 nm. The cup-shaped morphology of an A549-derived EV
was observed in the TEM image of Fig. 3(B). Fig. 3(C) displays the
obtained representative SERS mapping images. The successful
isolation of lung cancer-associated EVs was evidenced by strong
signals of CD63-MBA, PTX3-MMTAA, and THBS1-TFMBA SERS

Fig. 3 Assay specificity. (A) The size distribution of A549-derived EVs in CCM. (B) TEM image of an A549-derived EV. (C) Representative false-color SERS
mapping images and (D) average SERS signatures of EVs derived from lung cancer cell line A549 and lung epithelial cell line BEAS-2B, which were
captured with antibodies against PTX3 and THBS1 on the nanomixing chip and labeled with SERS nanotags functionalized with antibodies against CD63,
PTX3, and THBS1. The control experiments included running A549-derived EVs on the nanomixing chip without capture antibodies or detected with
SERS nanotags without detection antibodies. SERS mapping images were established based on the characteristic peak intensities of CD63-MBA (red),
PTX3-MMTAA (green), and THBS1-TFMBA (blue) SERS nanotags, respectively. The percentages of signal dot areas to mapping areas were calculated to
plot SERS signatures. The data in (D) are represented as mean � standard deviation, where error bars represent the standard deviation of three
independent experiments.
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nanotags detected from EVs of A549 cells. By contrast, negligible
signals were obtained from EVs derived from BEAS-2B cells and
other control experiments. This was an encouraging finding for
potential use in lung cancer screening. These results further
highlighted the powerful ability of nanomixing forces in mini-
mizing non-specific binding towards gold electrodes. The SERS
signatures of EVs derived from A549 and BEAS-2B cells as well as
controls were averaged from three replicates and are presented
in Fig. 3(D), showing consistent results to the representative
SERS mapping images (Fig. 3(C)). To validate the SERS results,
high-resolution flow cytometry was performed to evaluate the

expression of CD63, PTX3, and THBS1 on the EV surface. As
indicated in Fig. S4 (ESI†), A549-derived EVs showed expression
of all three markers, demonstrating the detection ability of our
nanostrategy in analyzing tumor-associated EVs in CCM.

2.4. Assay sensitivity

To determine the assay sensitivity in the phenotypic characteri-
zation of lung cancer-associated EVs, we examined the SERS
signal intensities in response to different concentrations of
A549 cell-derived EVs. As indicated in Fig. 4(A), the representa-
tive SERS mapping images showed that SERS signals decreased

Fig. 4 Assay sensitivity in the phenotypic characterization of lung cancer-associated EVs. (A) Representative false-color SERS mapping images and
(B) average SERS signatures in detecting A549-derived EVs in the range from 103 to 108 EVs mL�1. The data in (B) are represented as mean � standard
deviation, where error bars represent the standard deviation of three independent experiments (n = 3).
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proportionally with decreasing EV concentrations, and no signals
were observed in the absence of lung cancer-associated EVs. The
characterization and detection sensitivity were further determined
by analyzing SERS signatures obtained from different EV concen-
trations (Fig. 4(B)). It was observed that the average SERS signa-
tures obtained from high EV concentrations (105–108 EVs mL�1)
were similar. As such, the lowest EV concentration to generate a
reliable SERS signature was 105 EVs mL�1. We further determined
the detection sensitivity based on the total signal areas from three
markers instead of single markers. As shown in Fig. S5 (ESI†), the
total percentages of signal dot areas to mapping areas linearly
increased with the common logarithm of EV concentrations with
a squared correlation coefficient (R2) of 0.97 in the range from
103–107 EVs mL�1, providing the limit of detection (LOD) of
19 EVs mL�1.

2.5. Clinical samples

To evaluate the potential of our nanostrategy for early detection
of lung cancer, EV phenotyping was performed on plasma
samples from patients diagnosed with early-stage lung cancer
(n = 28), and benign lung diseases (n = 23), as well as healthy
controls (n = 26). Given that it is particularly challenging to
diagnose the malignant potential and heterogeneous charac-
teristics of nodules with ground-glass (GG) opacity in CT
images,25 5 pure GG nodules (GGNs) and 13 mixed GGNs were
included to challenge our nanostrategy. As CT scans have been
widely used for lung cancer screening, a CT scan was performed
on 26 lung cancer patients and 21 benign patients for a head-to-
head comparison of the diagnostic performance. All clinical
patient samples were pathologically examined, which is the
gold standard for lung cancer confirmation. The demographic
data and clinical information of all participants have been
summarized in Table 1 and Table S1 (ESI†). Fig. 5 provides
the representative CT images of 3 early-stage lung cancer

patients and 3 patients with benign lung diseases. As shown
in the CT images (Fig. 5(A)), it was difficult to discriminate
malignant and benign lung nodules as they shared similar
features. By contrast, the representative SERS mapping images
in Fig. 5(B) and average SERS signatures in Fig. S6 (ESI†)
showed clear differences in plasma EV phenotypes, which were
reflected by the phenomenon that more signal dots were
detected from early-stage lung cancer patients (P2, P11, and
P13) than from patients with benign lung diseases (B9, B10,
and B19). Weak signals in patients with benign lung diseases
might come from the low abundance of PTX3- or THBS1-
expressing EVs in plasma.

To evaluate the diagnostic potential of each EV marker, we
compared the average percentages of SERS signal dots among
the three clinical groups (Fig. 6(A)). The average percentages of
SERS signal dots of target markers were significantly higher in
early-stage lung cancer patients than patients with benign lung
diseases and healthy controls. No obvious differences in each
marker expression on EVs were observed between patients with
benign lung diseases and healthy controls. The heat map result
was used to represent the average SERS signatures from three
independent experiments. As shown in Fig. 6(B), the expression
level of each target marker on PTX3+ THBS1+ lung cancer-
associated EVs was consistent with the representative SERS
mapping images (Fig. 5(B)) and average signatures (Fig. S6,
ESI†). Additionally, we observed heterogeneous EV phenotypes
within each clinical group in both Fig. 6(A) and (B), high-
lighting the importance of combining multiple markers for
early lung cancer detection.

For accurate and objective differentiation of malignant and
benign nodules, machine learning (i.e., LDA) was further
applied to extract lung cancer-associated EV phenotypes and
build the discriminant model. As indicated in Fig. 6(C) and (D),
the early-stage lung cancer group showed a dispersive distri-
bution of discriminant scores, suggesting the heterogeneity
of EV phenotypes among early-stage lung cancer patients.
In contrast, patients with benign lung diseases and healthy
controls clustered together and separated well from the early-
stage lung cancer group (Fig. 6(D)).

Given the small clinical cohort, leave-one-out cross-
validation (LOOCV) analysis was applied to evaluate the perfor-
mance of the established discriminant model, in which the
learning algorithm was applied once for each sample using the
selected sample as a single-item test set and all other samples
as a training set (Fig. 6(E)). LOOCV analysis showed that our
nanostrategy combined with LDA achieved a clinical detection
sensitivity of 76.9% and specificity of 100% in differentiating
early-stage lung cancer and benign lung diseases (Fig. 6(E)).
We next sought to evaluate whether other machine learning
algorithms (PLS-DA, SVM, MLR, and KNN) could achieve better
clinical detection sensitivity and specificity. As summarized in
Fig. 6(E), a clinical sensitivity of 80.8–92.3% and a specificity of
100% were achieved, showing the higher sensitivity of these
machine learning algorithms than LDA. These results thus
highlighted that combining our nanostrategy and appropriate
machine learning algorithms can provide excellent accuracy

Table 1 Clinical characteristic summary of early-stage lung cancer
patients, patients with benign lung diseases, and healthy controls

Lung cancer
(n = 28)

Benign
(n = 23)

Healthy controls
(n = 26)

Age 20–30 0 0 18
30–40 2 1 5
40–50 5 6 3
50–60 5 9 0
60–70 14 4 0
70–80 1 3 0
80–90 1 0 0

Gender Male 12 14 15
Female 16 9 11

Nodule
classification

Solid 11 19 N/A
Pure GGN 4 1
Mixed GGN 11 2
Unknown 2 1

Stage 0 4 N/A N/A
I 24

Pathology AIS 5 N/A N/A
MIA 9
IAC 14

Abbreviations: adenocarcinoma in situ, AIS; minimally invasive adeno-
carcinoma, MIA; invasive adenocarcinoma, IAC.
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for differentiating early-stage lung cancer and benign lung
diseases.

For comparison, CT scan-based lung cancer diagnosis was
performed with the same patient cohort by an experienced
radiologist, resulting in the clinical detection sensitivity of
92.3% and specificity of 71.4% (Fig. 6(E)). However, it is noted
that CT scan-based lung cancer diagnosis is based on subjec-
tive interpretation and thus might suffer from inter-observer
variability. Overall, our nanostrategy showed superior clinical
specificity to CT scans in differentiating early malignant and
benign lung nodules.

ROC analysis was further performed to evaluate the discri-
minant performance of our nanostrategy in combination with
different machine learning algorithms, over a range of trade-
offs between sensitivity and specificity. The area under the
curve (AUC) was used as a combined measure of sensitivity
and specificity for assessing inherent validity of a diagnostic
test. An AUC value of 1 indicates a perfect performance in
differentiating diseased with non-diseased subjects, without
any false positive and false negative results. Fig. 6(F) and (G)
show the AUC values ranging from 0.967 to 1 in differentiating
patients with early-stage lung cancer and benign lung diseases

Fig. 5 Representative (A) CT images and (B) false-color SERS mapping images of early-stage lung cancer patients (P2, P11, and P13) and patients with
benign lung diseases (B9, B10 and B19).
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Fig. 6 Clinical sample analysis. (A) SERS measurements of target marker levels on the surface of plasma EVs among clinical groups. (B) Heat map results
representing the EV SERS signature of individuals. (C) LDA discriminant scores obtained from a discriminant model for classifying 26 early-stage lung
cancer patients and 21 patients with benign lung diseases. (D) LDA discriminant scores obtained from a discriminant model for differentiating 28 early-
stage lung cancer patients and controls consisting of 23 patients with benign lung diseases and 26 healthy controls. (E) The clinical detection sensitivity
and specificity of our nanostrategy in combination with machine learning algorithms (LDA, PLS-DA, SVM, MLR, or KNN) and a CT scan differentiating
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and from 0.877 to 0.978 in separating cancer patients from non-
cancer patients (patients with benign lung diseases and healthy
donors). ROC results thus showed excellent diagnostic perfor-
mance of our nanostrategy combined with machine learning in
early lung cancer screening, particularly the differentiation of
patients with malignant from benign nodules.

3. Conclusion

Identification of tumor-associated liquid biopsy markers is of
great importance for minimally invasive lung cancer screening.
In this study, we combined Au@Ra@Ag NPs, a nanomixing
chip, and machine learning to discover plasma EV phenotypes
that were unique to early-stage lung cancer patients. Our
nanostrategy provided an R2 of 0.97 within a linear range of
103–107 EVs mL�1 and a LOD of 19 EVs mL�1. This detection
sensitivity enabled the direct phenotypic characterization of
EVs from 10 mL of plasma samples without any EV pre-isolation.
We found that early-stage lung cancer patients had significantly
higher levels of PTX3 and THBS1 on plasma EV surfaces than
patients with benign lung diseases and healthy controls. In a
head-to-head comparison with CT scan-based lung cancer
diagnosis (92.3% sensitivity and 71.4% specificity), our nanos-
trategy achieved 92.3% sensitivity and 100% specificity in
differentiating early malignant and benign lung nodules. Over-
all, our nanostrategy achieved an AUC value of 0.978 in the
differentiation between the early-stage lung cancer patients and
controls consisting of patients with benign lung diseases and
healthy controls. This result thus highlighted that EVs as liquid
biopsy markers could be sampled and profiled to detect the
early occurrence of lung cancer.

4. Experimental section
4.1. Clinical sample acquisition

This study was conducted according to the International
Ethical Guidelines for Biomedical Research Involving Human
Subjects and the National Statement on Ethical Conduct in
Human Research. Ethical approvals were obtained from the
Human Research Ethics Committees of Fujian Cancer Hospital
(SQ2020-025-01) and Fujian Normal University, respectively.
All experiments related to human samples were performed in
accordance with the approved guidelines. All patients have
provided their written informed consent for the research study
protocol. Plasma samples were collected from patients with
early-stage lung cancer (n = 28), patients with benign lung
diseases (n = 23), and healthy controls (n = 26) from Fujian
Cancer Hospital. All blood samples were collected in ethylene-
diaminetetraacetic acid (EDTA) tubes, which were gently

inverted up and down 8–10 times and stored vertically at
4 1C. Blood samples were centrifuged at 1100 � g for 15 min
at room temperature. Subsequently, the plasma supernatant
was collected, dispensed in lyophilized tubes and stored at
�80 1C. The demographic data and clinical information of all
participants are summarized in Table 1 and Table S1 (ESI†).

4.2. Cell culture and CCM collection

Human lung cancer cell line A549 and a non-tumorigenic lung
epithelial cell line BEAS-2B were obtained from American Type
Culture Collection. Cells were cultured in the RF10 medium
consisting of RPMI 1640 medium (Gibco), 10% fetal bovine
serum (FBS, Gibco), 100 U mL�1 penicillin-streptomycin
(Gibco) and 2 mM GlutaMAX. All cells were maintained at
37 1C with 5% CO2 in a humidified incubator. The old culture
media were removed when the cell confluency reached 80%.
Cells were rinsed with PBS three times and cultured in serum-
free media. After 24 h culture, the supernatant (i.e., CCM) was
collected and stored at �80 1C before future analysis. The
concentration and the particle size distribution of EVs in
CCM were characterized using a ZetaView � 30 (Particle Metrix,
Germany) by Shiyanjia Lab (https://www.shiyanjia.com). The EV
morphology was visualized using a Hitachi HT7700 TEM oper-
ated at 100 kV.

4.3. Nanoflow cytometry characterization of EV surface
proteomics

To isolate EVs, the CCM sample was sequentially centrifuged at
2000 � g for 30 min, 10 000 � g for 45 min, and 100 000 � g for
70 min twice at 4 1C. PBS was used as the washing and
resuspension buffer. The characterization of CD63, PTX3, and
THBS1 was performed individually on 109 EVs. The expression
of CD63 on EVs was detected by staining EVs with FITC-
conjugated CD63 antibodies (BD Biosciences, 556019). The
corresponding control was EVs with FITC-conjugated IgG anti-
bodies (BioLegend, Cat. 400108). The PTX3 and THBS1 levels
on EVs were measured by staining EVs with either anti-PTX3
antibodies (Novus biologicals, MAB1826) or anti-THBS1 anti-
bodies (Novus biologicals, MAB3074), followed by the FITC-
labeled anti-IgG antibodies (Bioss antibodies, bs-0296G). The
corresponding control was EVs with FITC-labeled anti-IgG
antibodies. Samples were incubated at 37 1C for 30 min and
purified with the Hitachi ultracentrifuge (CP100MX) at 110 000
� g for 70 min at 4 1C. The samples were subsequently analyzed
using a NanoFCM instrument (N30E). Data were collected using
NF Profession 1.17 software and analyzed with FlowJo_v10.7.1.

4.4. SERS nanotag synthesis

Au NPs were synthesized via the citrate-reduction according to
the previous literature.26 1 mL of Au NP solution was then

26 early-stage lung cancer patients and 21 patients with benign lung diseases. ROC curves reflected the diagnostic ability of our nanostrategy in
combination with different machine learning algorithms for the differentiation of (F) early-stage lung cancer and benign lung diseases, and (G) early-stage
lung cancer and controls (benign lung diseases and healthy controls). Data in (A) are represented as mean � standard deviation, where error bars
represent the standard deviation of biological replicates. ****P o 0.0001; ns, not significant.
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incubated with different amounts of Raman reporters (2 mL of
1 mM MBA, 4 mL of 1 mM TFMBA, 4 mL of 1 mM MMTAA
in ethanol) for 5 h at room temperature. After incubation,
centrifugation was performed to remove the residuals. The
concentrate was then resuspended in 1 mL of Milli-Q water
(18.2 MO�cm at 25 1C). To form Ag shells on the surface of Au
NPs, 30 mL of 1% w/v trisodium citrate, 10 mL of 10 mM sodium
hydroxide, and 135 mL of 1 mM silver nitrate were sequentially
added into the solution under magnetic stirring. After that,
202 mL of 10 mM ascorbic acid was added dropwise into the
mixture and shaken for 0.5 h. The core–shell NPs were then
purified via centrifugation and then resuspended in 1 mL of
Milli-Q water. The core–shell NPs were then incubated with
2 mL of 1 mM dithiobis(succinimidyl propionate) (DSP) at
room temperature for 5 h. The free DSP was then removed via
centrifugation. After centrifugation, the concentrate was
resuspended in 200 mL of 0.1 mM PBS and incubated with
1 mg of primary antibodies against CD63 (Novus biologicals,
NBP2-42225), PTX3 (Novus biologicals, MAB1826), or THBS1
(Novus biologicals, MAB1826) for 30 min at room temperature.
The mixture was then centrifuged at 4 1C to remove free
antibodies and resuspended in 200 mL of 0.1% w/v bovine serum
albumin (BSA).

4.5. Nanoparticle characterization

TEM and EDS images of SERS nanotags were taken by a FEI
Talos 200S operated at 200 kV. The UV-vis absorption spectra of
NPs were measured using a PerkinElmer Lambda 950 UV-vis
spectrometer. The concentrations and particle size distribu-
tions of NPs were determined using a NanoSight N300 (Malvern
Panalytical, UK). For each sample, three videos of 60 s duration
were recorded and were analyzed using NTA software.

4.6. Chip fabrication and functionalization

The chip was made of a glass substrate with arrays of gold
electrodes, which were architected into an asymmetric struc-
ture—an inner circular electrode (diameter = 1000 mm) and
an outer ring-shaped electrode (width = 120 mm) that were
separated by a distance of 1000 mm. The chip was fabricated
using photolithography according to previous literature.5,12,13

Briefly, the photomask of electrode structures was designed
(L-Edit, Tanner Research, USA) and written to a chrome mask
(5 inch, Shenzhen Qingyi Precision Mask Making, Singapore)
using a direct laser writer (Heidelberg mPG 101, Germany).
A 4 inch Borofloats wafer (Bonda Technology Pte Ltd,
Singapore) was dehydrated at 150 1C for 25 min, spin-coated
with AZnLOF 2020 (Microchemicals GmbH, Germany) at
3000 rpm for 30 s, and then transferred to a hot plate at
110 1C for 2 min. UV exposure was then performed on the
coated wafer with a constant dose of 150 mJ cm�1 using an EVG
620 mask aligner (EVG Group, Austria). The negative electrode
structure was subsequently revealed by baking at 110 1C for
1 min and wafer development for 45 s in AZs 726 MIF
(Microchemicals GmbH, Germany). The developed wafer was
coated with a 10 nm layer of Ti and 200 nm of gold using
a Temescal FC-2000 electron beam evaporator (Ferrotec, USA).

The final electrode structure of the wafer was obtained
by overnight lift-off in Remover PG (Microchemicals GmbH,
Germany).

A polydimethylsiloxane (PDMS) microwell array was prepared
by curing the activated silicon elastomer solution (Sylgards 184,
Dow, USA) in a vacuum drying oven at 80 1C for 20 min and then
punching microwell arrays (diameter = 6 mm) according to the
positions of gold electrodes on the chip. The PDMS microwell
array was thermally bound to the chip at 65 1C for 7 h to complete
the device preparation.

4.7. Chip functionalization

After binding the PDMS microwell array to the chip, 20 mL of
5 mM DSP in dimethyl sulfoxide was loaded into each well for
2 h incubation, followed by one wash with ethanol and three
washes with PBS buffer in sequence. The gold electrodes were
then incubated with 10 mL of 10 mg mL�1 antibodies against
PTX3 (Novus biologicals, MAB1826) and THBS1 (Novus bio-
logicals, MAB3074) for 2 h and blocked with 1% w/v BSA for
another 2 h at room temperature. All steps were performed
at room temperature. Microwells were rinsed with PBS buffer
prior to usage.

4.8. Capture and labeling of EVs

50 mL of CCM or diluted plasma (5-fold dilution) was added
to the microwells to perform immune capture of EVs from
complex samples under the field condition of 800 mV and
500 Hz. After 45 min reaction, microwells were rinsed with the
washing buffer (PBS buffer with 1% w/v BSA). 20 mL of diluted
SERS nanotags (25-fold dilution) was then added to microwells
for EV labeling for 20 min under the above field conditions
(i.e., 800 mV and 500 Hz), followed by rinsing with the washing
buffer.

4.9. SERS measurements

SERS spectral mapping was performed using a confocal HORIBA
Raman spectrometer (XploRAtPLUS) equipped with a 785 nm
laser, a 1200 g mm�1 grating blazed at 750 nm, a confocal hole
of 300 mm, 100 mm entrance, and an electron multiplying
charge-coupled device. SERS spectral imaging was performed
at an area of 60 mm � 60 mm (60 pixels � 60 pixels) with
1 mm spatial resolution using a 50� microscope objective
(�50_VIS_LWD). Correspondingly, one SERS spectrum in the
range of 400–1800 cm�1 was taken from each pixel by irradia-
tion with a laser power of 38 mW for 0.05 s integration time.
Before SERS measurements, the characteristic peak of a silicon
wafer at 520 cm�1 was used as the reference to calibrate the
spectrometer. All SERS spectra were collected and background-
corrected using the LabSpec 6 software.

The collected signal spectrum was baseline-corrected using
LabSpec6 software to remove the background noise. After
baseline correction, false-color SERS mapping images were
established based on characteristic peak intensities of SERS
nanotags: 1080 cm�1 for CD63-MBA (red), 1287 cm�1 for PTX3-
MMTAA (green), and 1632 cm�1 for THBS1-TFMBA (blue) SERS
nanotags, respectively. The background signal was set to black.
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The area of colored pixels was calculated using ImageJ and
divided by the total mapping area to determine the EV SERS
signature. EV SERS signatures were calculated from three SERS
spectral images obtained from three independent experiments.

4.10. Limit of detection

The LOD was calculated according to the equation below:

LOD (area ratio) = mean of blank + 3 � standard deviation

of blank

The LOD (EV concentration) was calculated by converting
the LOD (area ratio) using the formula obtained from the
calibration curve.

4.11. Statistical analysis

SERS signatures derived by calculating the percentages of
signal dot areas of three SERS nanotags to mapping areas, were
used as input variables to the LDA, PLS-DA, SVM, MLR, and
KNN. These machine learning analyses were performed using
the SPSS 24.0 software package (SPSS Inc., USA). One-way
analysis of variance and ROC analysis were carried out using
GraphPad Prism 9.
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