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Universal ion-transport descriptors and classes of
inorganic solid-state electrolytes†
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Solid-state electrolytes (SSEs) with high ion conductivity are pivotal

for the development and large-scale adoption of green-energy

conversion and storage technologies such as fuel cells, electro-

catalysts and solid-state batteries. Yet, SSEs are extremely complex

materials for which general rational design principles remain inde-

terminate. Here, we combine first-principles materials modelling,

computational power and modern data analysis techniques to

advance towards the solution of such a fundamental and techno-

logically pressing problem. Our data-driven survey reveals that the

correlations between ion diffusivity and other materials descriptors

in general are monotonic, although not necessarily linear, and

largest when the latter are of vibrational nature and explicitly

incorporate anharmonic effects. Surprisingly, principal component

and k-means clustering analyses show that elastic and vibrational

descriptors, rather than the usual ones related to chemical compo-

sition and ion mobility, are best suited for reducing the high

complexity of SSEs and classifying them into universal classes.

Our findings highlight the need for considering databases that

incorporate temperature effects to improve our understanding of

SSEs and point towards a generalized approach to the design of

energy materials.

Social networks use modern data analysis techniques to
improve their customer experience and increase advertising
revenues.1 Each mouse click and finger action on the touchsc-
reen reveal information on the user preferences that can be
employed to classify individuals into similarity groups and thus
better select the contents they are exposed to. Materials, in

analogy to humans, conform to highly diverse and complex
collectives and as such advanced data analysis techniques are
being increasingly applied on them to improve their design and
recommend possible uses.2,3 A necessary condition for the
meaningful development and application of data-driven mate-
rials design strategies is the existence of comprehensive and
reliable databases.

Solid-state electrolytes (SSEs) are a class of energy materials
in which specific groups of ions may start to diffuse throughout
the crystalline matrix driven by thermal excitations.4 SSEs are the
pillars of green-energy conversion and storage technologies like
fuel cells, electrocatalysts and solid-state batteries; hence tuning
of their ion-transport properties turns out to be critical in the
fields of energy and sustainability. SSEs, however, are highly
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New concepts
We present a data-driven analysis of solid-state electrolytes (SSEs) that
covers aspects generally unaddressed by previous computational studies
and the existing density functional theory (DFT) materials databases. A
comprehensive first-principles database was created for prototypical
families of inorganic SSEs containing both sets of zero-temperature
DFT and finite-temperature ab initio molecular dynamics (AIMD)
results. The generated SSE DFT-AIMD database has been made publicly
available at the url https://superionic.upc.edu/. By applying modern data
analysis (e.g., principal component and k-means clustering analyses) and
machine learning techniques on the created SSE DFT-AIMD database, it is
demonstrated that the diffusion of ions in SSEs strongly and
monotonically correlates with vibrational descriptors that explicitly
incorporate anharmonic effects (i.e., those obtained from AIMD
simulations). Also, the bulk of the variance in SSEs is encoded in the
elastic and vibrational properties of the materials, not in their ion
mobility or in their chemical composition (thus, SSEs that rigorously
can be considered as overall highly similar in practice may exhibit very
different ion diffusion and chemical features). Our work highlights the
necessity to consider finite-temperature effects in a high-throughput
fashion to better understand SSEs and improve the predictions of
machine learning models in them. In addition, it provides new
theoretical guidelines for analyzing materials that in analogy to SSEs
are complex, highly anharmonic and technologically relevant (e.g.,
thermoelectrics and superconductors).
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complex materials that present disparate compositions, structures,
thermal behaviors and ion mobilities; thus, it is difficult to ascribe
them to general and rational design principles. These difficulties
have motivated researchers to seek for easy to measure (or calcu-
late) quantities that may serve as good descriptors of the ion
conductivity; examples of such descriptors include structural para-
meters, defect formation energies, atomic polarizabilities and
lattice dynamics.5–9 In recent years, pinpointing the role of phonon
dynamics in ion transport has attracted special and increasing
attention. Actually, for some specific SSEs, it has been demon-
strated that lattice anharmonicity is one of the most influential
factors affecting their ion mobility.9–14

Quantum mechanics-based density functional theory
(DFT)15 has proven to be tremendously successful in the field
of computational materials science and currently several data-
bases of automated DFT calculations are being widely
employed for materials design applications.16–19 Nevertheless,
despite their great success, the existing DFT databases might
not be entirely adequate for progressing in the design and
understanding of SSEs because they mostly contain information
generated at zero temperature (e.g., structural parameters and
formation energies) and thus completely disregard anharmonicity
and T-induced effects.20 In addition, modern high-throughput
and machine learning studies relying on such DFT databases
mainly have targeted Li- and Na-based SSE families due to their
predominance in electrochemical storage applications.8,21,22 To
holistically better understand the phenomena of ion transport,
however, it might be necessary to analyse in equal measure other
classes of SSEs, like those involving mobile O, Cu, Ag and halide
ions, which are technologically relevant as well.23–25

Here, we present a data-driven analysis of SSEs that covers
aspects generally unaddressed by previous computational studies
and the existing DFT materials databases. First, a comprehensive
first-principles database was created for prototypical families of
inorganic SSEs containing both sets of zero-temperature DFT and
finite-temperature ab initio molecular dynamics (AIMD) results.
Subsequently, a thorough correlation study of the ion diffusion
coefficient (D) and other materials features was performed to
determine universal ion-transport descriptors (as well as those
specific to Li-based SSEs). By relying on this new knowledge
and the introduced DFT-AIMD database, several machine learning
models were trained for the prediction of D and other T-depen-
dent quantities. Finally, principal component and k-means clus-
tering analyses and data techniques customarily employed in the
social sciences were applied to reduce the high complexity of
the SSE landscape and determine universal classes of fast-ion
conductors.

Curated first-principles SSE database
The generated SSE DFT-AIMD database26 comprises a total

of 61 materials, of which 46% contain Li, 23% halides (i.e., F,
Cl, Br and I), 15% Na, 8% O and 8% Ag/Cu atoms as the mobile
ions. These percentages were selected in order to roughly
reproduce the relative abundances of fast-ion conductors
reported in the literature.27 The generated SSE DFT-AIMD
database contains materials with both stoichiometric and
non-stoichiometric compositions and the AIMD results were

obtained over a broad range of temperatures (ESI,† Tables S1–S3
and ref. 26).

To analyze the degree of similarity between all the surveyed
SSEs, a great variety of descriptors were estimated for each
material adding up to a total of 54 (the complete list of
descriptors is detailed in the Methods section). Some of these
descriptors had already been proposed in the literature (e.g.,
band gap and vacancy formation energy) while some others were
totally new (e.g., harmonic phonon energy and Pugh’s modulus
ratio). The descriptors were classified into three general cate-
gories: ‘‘mechanical–elastic’’, ‘‘diffusive–vibrational’’ and ‘‘struc-
tural–compositional’’. The values of some descriptors were
obtained from zero-temperature DFT calculations (‘‘mechani-
cal–elastic’’ and ‘‘structural–compositional’’) while the rest (‘‘dif-
fusive–vibrational’’) were deduced from AIMD simulations
performed at temperatures above ambient conditions (Methods
section and ESI,† Tables S1–S3).

It is worth noting that the results obtained from the exten-
sive AIMD simulations explicitly account for anharmonic
effects, which constitutes one of the most important novelties
and technical advances of the present work and the introduced
SSE database. Moreover, most vibrational descriptors were
estimated considering the following cases: (1) all the ions, (2)
only non-diffusive ions and (3) only diffusive ions, in order to
better substantiate the role of the vibrating crystalline matrix in
ion transport (Methods section). The approximate computa-
tional cost of the generated SSE DFT-AIMD database was 50
Million CPU hours.

Correlations between pairs of SSE descriptors
The correlation for a couple of materials descriptors, x and y,

can be quantified in several non-unique ways.28 In this work,
we considered the Pearson (cP) and Spearman (cS) correlation
coefficients which are defined as

cPðx; yÞ ¼
covðx; yÞ
sxsy

and cSðx; yÞ ¼ cP RðxÞ;RðyÞ½ �; (1)

where si is the standard deviation of the descriptor i and R(i)
is the rank of the i samples. The covariance function is
expressed as

cov(x,y) = hxyi � hxihyi, (2)

where h�i denotes the expected value. The Spearman correlation
coefficient is able to detect monotonic dependencies between
pairs of descriptors while the Pearson correlation can only
identify linear correlations. Thus, the cS correlation coefficients
are more general and robust than cP (i.e., can assess monotonic
relationships whether linear or not). For this important reason,
and despite the fact that linear correlations have been assumed
in most previous SSE studies,7,9 we will stick to the Spearman
correlation definition for the rest of our analysis.

Fig. 1(a) shows the Spearman correlation coefficients esti-
mated for all pairs of materials descriptors considering all the
materials in the DFT-AIMD database and T-dependent proper-
ties calculated at T = 500 � 100 K. We note that for this type of
analysis the temperature conditions should be equivalent for
all the compounds; otherwise some correlation coefficients may
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be significantly biased (e.g., those involving D). An analogous
Pearson correlogram is found in the ESI,† Fig. S1. In view of the
preeminence of Li-based SSEs in electrochemical applications,
the same correlation analysis was performed for this family of
materials alone (Fig. 1(c)). To assess the statistical significance
of the estimated cS correlograms, we computed the corres-
ponding p-value matrices (Fig. 1(b) and (d)). The p-value repre-
sents the probability for a particular correlation result to arise if
the null hypothesis (i.e., no correlation at all) were true, thus
the smaller the calculated p-value the more statistically signifi-
cant cS is.

From a bird’s eye view, the two correlograms obtained for all
SSEs and only those containing Li ions look quite similar.

Nevertheless, the p-value matrix estimated for all SSEs displays
a noticeably higher number of statistically significant cases
(arbitrarily defined here as p o 0.2), probably due to the larger
amount of samples. Reassuringly, a number of already expected
high correlation coefficients, like those estimated for couples of
vibrational and elastic quantities that are physically related
(e.g., Fvib and Svib), emerge from the calculated cS maps. For the
sake of focus, hereafter, we will concentrate on the correlations
involving the ion diffusion coefficient (D).

Fig. 2(a) shows a standardized representation [that is, x̂ �
(x � hxi)/sx] of the pairs of descriptors D–Cv and D–hoi, where
Cv stands for the lattice heat capacity and hoi stands for the
average vibrational frequency (Methods). In these two cases, as

Fig. 1 Spearman correlograms and the corresponding p-value matrices. Correlations between pairs of materials features obtained for (a) all and (c)
exclusively the Li-based SSEs contained in our DFT-AIMD database. The p-value matrices corresponding to all and exclusively Li-based Spearman
correlograms are shown in (b) and (d), respectively. All the AIMD-based diffusive and vibrational descriptors were estimated at T = 500 � 100 K.
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well as in others not shown here, it is clearly appreciated that
the dependency between D and other quantities is far from
linear although roughly monotonic (ESI,† Fig. S2). This outcome
confirms that for determining reliable relationships between SSE
features the Spearman correlation analysis is certainly more
suitable than the usual Pearson approach. Actually, there are
significant discrepancies between the calculated Spearman and

Pearson correlation maps; for instance, cS amounts to �39% for
the pair of descriptors D–hoi (Fig. 1(a)), whereas cP renders a
significantly smaller value of �23% (ESI,† Fig. S3).

Universal ion diffusion descriptors
Fig. 2(b) shows the Spearman correlation coefficients esti-

mated for all pairs of descriptors involving D and considering
all the materials in the DFT-AIMD database. All the AIMD-based

Fig. 2 Correlation study of the ion diffusion coefficient with other materials descriptors. (a) Standardized representation of the ion diffusion coefficient D
along with other materials descriptors. The descriptor correlations are, to some extent, monotonic but not linear as it is shown by the orange and blue
lines therein (both simple guides to the eyes). The Spearman correlation coefficients for D and the rest of materials descriptors considered in this study,
obtained by taking into account (b) all and (c) exclusively the Li-based compounds included in our DFT-AIMD database. The p-value results
corresponding to the Spearman correlation coefficients are indicated with different colours. All the AIMD-based diffusive and vibrational descriptors
were estimated at T = 500 � 100 K.
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vibrational and diffusive descriptors were estimated at T =
500 � 100 K. First, we note that larger |cS| values are associated
with statistically more significant correlation results (i.e., smaller
p-values). And secondly, the estimated correlation coefficients in
general are not very high: only 19 out of the 53 pairs of materials
descriptors present |cS| values larger than 20% while the max-
imum correlation value only amounts to 39% (obviously, the D–D
pair was excluded here). Thus, none of the many proposed
features alone is particularly correlated to D. This general out-
come is consistent with the usual difficulties encountered in the
identification of robust ion transport descriptors.6

Interestingly, the largest D correlations are found for AIMD-
based vibrational descriptors (Methods section) like the phonon
band center (or an average lattice frequency), hoi (�39%), lattice
heat capacity, CV (+39%), vibrational free energy, Fvib (�37%),
and vibrational entropy, Svib (+33%). These results indicate that
insulator materials with small average phonon frequencies, large
heat capacities and large vibrational entropies should be good
ion conductors (ESI,† Fig. S2). It is worth noticing that strongly
anharmonic materials perfectly fit into this description; thus our
data-driven results generalize the conclusions of recent experi-
mental SSE studies revealing that low-energy phonon modes can
actively influence ion diffusion in some specific materials.9–14

Our correlation analysis provides further valuable insights.
First, when the vibrational descriptors were estimated consid-
ering either non-diffusive or diffusive ions alone (superscripts
‘‘nd’’ and ‘‘d’’ in Fig. 2(b), respectively), the value of the D
correlation coefficients slightly decreased in the first case
(|cS| = 30%) and practically vanished in the second (except
that corresponding to ho30i(d)). This outcome highlights the
existence of a strong and general interplay between the vibrat-
ing crystalline matrix and mobile ions. And secondly, when
considering vibrational descriptors that do not explicitly take
into account anharmonic effects, like the lowest-energy optical
phonon mode calculated at T = 0 K (G in Fig. 2(b)), the resulting
D correlation coefficient (�11%) significantly decreases in
comparison to those obtained for anharmonic quantities
(besides, the corresponding p-value increases). Thus, scrutiny
of anharmonicity appears to be indispensable for the evalua-
tion of reliable and statistically meaningful D correlation
coefficients.

Few descriptors belonging to the ‘‘structural–compositional’’
category also correlate appreciably high with D. Of special
mention are the vacancy formation energy of the mobile ions
(Evac,�22%), the crystal polarizability (aC, +25% –calculated with
the Clausius–Mossotti relation –) and the symmetry of the
perfect lattice (SO, +27%).29 On the other hand, intrinsically
electronic properties like the energy band gap (Eg) and dielectric
constant (e) have virtually no correlation with the ion diffusivity
(|cS| r 5%). As a word of caution, we note that when the
correlations between D and other materials descriptors are
assumed to be linear (i.e., Pearson’s approach), the resulting
conclusions significantly differ from those just explained (ESI,†
Fig. S3). In particular, most D correlation coefficients turn out to
be smaller than the corresponding Spearman values and the
materials descriptors belonging to the ‘‘mechanical–elastic’’

category (e.g., the Young and shear moduli – E and G – ) become
similarly as relevant as the vibrational features.

Fig. 2(c) shows the Spearman D correlation coefficients
estimated exclusively for Li-based SSEs. Intriguingly, the resulting
cS chart differs appreciably from that estimated considering all the
SSEs in the DFT-AIMD database (Fig. 2(b)). First, the D correlation
coefficients in general present larger values with a total of 11 pairs
of materials descriptors scoring above 40%. Some of the largest
|cS| values correspond to the AIMD-based vibrational descriptors
Fvib (�42%), Svib (+42%) and ho30i(d) (�63%). However, in contrast
to the all-SSE case, now G, which is estimated at T = 0 K and does
not explicitly account for anharmonicity, is strongly correlated
with D as well (� 47%). Moreover, several descriptors belonging
to the ‘‘mechanical–elastic’’ category that, to the best of our
knowledge, have not been previously proposed in the literature
like Vickers’ hardness, HV (�43%), Pugh’s modulus ratio, k
(�56%), Poisson’s ratio, n (+55%), Cauchy’s pressure, PC (+48%),
and velocity ratio, vr (+56%), now also render very high |cS| values.
Therefore, in terms of key D descriptors, Li-based compounds are
plainly different from the average SSEs, a finding that fundamen-
tally justifies the large number of studies focusing on the ion
transport properties of this family of materials.

Machine learning models for the prediction of T-dependent
properties

In view of the complex relationships between D and other
materials descriptors (Fig. 2(a)), several machine learning
(ML) models based on artificial neural networks were trained
on the SSE DFT-AIMD database with the aim of predicting
the ion diffusion coefficient and other relevant T-dependent
properties such as hoi and CV (Methods section). To this end,
we considered all the simulated temperatures listed in the ESI,†
Tables S1–S3 and.26 Two different ML training schemes were
contemplated: (1) considering all the materials descriptors
(denoted as ‘‘anharmonic’’) and (2) excluding the AIMD-based
vibrational descriptors (‘‘harmonic’’). The predictions of our
trained ML models, quantified with a K-fold validation strategy
(Methods section), are shown in Fig. 3. Therein, it is appre-
ciated that the trained ML models can predict the finite-
temperature values of hoi and CV with relatively high accuracy.
In particular, the mean absolute percentage error (MAPE,
Methods) of the ‘‘anharmonic’’ (‘‘harmonic’’) ML model for
the ‘‘test set’’ amounts to 30% (35%) for hoi and only to 6%
(12%) for CV. In stark contrast, the ML predictions for the ion
diffusion coefficient are much less accurate, for both the
‘‘anharmonic’’ (MAPE of 260%) and the ‘‘harmonic’’ (280%)
cases, and a precise evaluation of how good these ML models
are is challenging.

Several conclusions follow from the ML results shown in
Fig. 3. First, the SSE DFT-AIMD database introduced in this
work appears to be comprehensive enough to ensure appro-
priate training of ML models able to make accurate predictions
for certain T-dependent materials properties. And secondly, the
ML-based prediction of the ion diffusivity appears to be a
particularly difficult task. In this latter case, however, a non-
negligible improvement is achieved when AIMD-based anhar-
monic vibrational descriptors are explicitly incorporated into
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the ML model (also in the hoi and CV cases). This outcome
indirectly corroborates our previous finding that anharmonicity
is a key general factor influencing ion transport. Nonetheless,

to improve the ‘‘anharmonic’’ ML predictions of D probably it
is necessary to increase the number of SSE materials and
descriptors in our DFT-AIMD database and/or resort to

Fig. 3 Machine learning (ML) models trained in our DFT-AIMD database for the prediction of different SSE T-dependent quantities. The ML models were
trained by considering and neglecting AIMD-based vibrational descriptors that explicitly incorporate anharmonic effects, labelled as ‘‘anharmonic’’ and
‘‘harmonic’’, respectively. The K-fold validation results obtained for the (a) first momentum of the vibrational density of states obtained from AIMD
simulations, hoi, (b) constant volume heat capacity obtained from AIMD simulations, CV, and (c) ionic diffusion coefficient, D, obtained from AIMD
simulations. ‘‘MAPE’’ stands for the mean absolute percentage error of the ML predictions (Methods section).
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alternative and more advanced ML approaches (e.g., graph
neural networks30).

Complexity reduction in the SSE landscape
Principal component analysis (PCA) is a statistical technique

widely employed for analyzing large data sets containing a
high number of features. PCA increases the interpretability of
a data set by reducing its dimensionality and simultaneously
preserving the maximum amount of information. Complexity
reduction is accomplished by linearly transforming the data
into a new coordinate system where most of its variation can be
described with fewer dimensions. The principal components
are the eigenvectors of the data set correlation matrix, which
are expressed as linear combinations of the initial descriptors.
The first principal component, the one with the largest eigen-
value, maximizes the variance of the projected data. The i-th
principal component corresponds to a direction that is ortho-
gonal to the previous i � 1 principal components and along
which the variance of the projected data is maximized as well.

Fig. 4 shows the results of diagonalizing the Spearman
correlation matrix obtained for all the materials in the SSE

DFT-AIMD database at T = 500 � 100 K (Fig. 1(a)). The first
three principal components (PC) account for about two thirds
of the total variance in the original 54-dimensional data set (as
quantified by the sum of their normalized eigenvalues, E62%);
hence, its complexity can be greatly reduced by considering data
projections on the orthogonal three-dimensional space PC1–
PC2–PC3 (which also fulfill the marginal variance increase
criterion, Fig. 4(a)). PC1 presents mixed ‘‘elastic’’ and ‘‘vibrational’’
character while PC2 and PC3 are predominantly ‘‘vibrational’’ and
‘‘structural’’ (Fig. 4(b)). Intriguingly, the contribution of the ion
diffusivity to each of these PC’s is practically zero, namely, 0.2%
to PC1, 0.8% to PC2 and 1.3% to PC3. This data-driven outcome
indicates that when it comes to characterize the great disparity
of SSEs, with the aim of fundamentally better understanding
them and to establish general SSE categories, the ubiquitous
D descriptor is actually irrelevant. Likewise, the compound
stoichiometry (Stc) and dielectric constant (e) hardly contribute
to the first three PC’s; hence, they neither can be regarded
as universally distinctive SSE features. By contrast, elastic and
vibrational descriptors like E, HV, hoi and CV become most

Fig. 4 Principal component analysis results obtained for the SSE DFT-AIMD database. (a) Eigenvalues corresponding to the diagonalization of the
Spearman correlation matrix obtained by considering all the materials in the DFT-AIMD database. (b) Eigenvector components of the first three principal
components obtained from the diagonalization of the Spearman correlation matrix obtained by considering all the materials in the DFT-AIMD database at
T = 500 � 100 K.
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pertinent for the evaluation of SSE similarities and general
classification purposes.

k-Means clustering analysis
Fig. 5 shows the results of our k-means clustering analysis

performed for all the materials in the SSE DFT-AIMD database at
T = 500 � 100 K. k-Means clustering is an unsupervised learning
algorithm that classifies sets of objects in such a way that objects
within the same group, called ‘‘cluster’’, are more similar to each
other in a broad sense than to the objects in other clusters. We
selected a subminimal number of 6 clusters to account for the SSE
database variance based on the outcomes of the elbow and
silhouette methods (ESI,† Fig. S4 and S5). (By increasing the
number of clusters up to 7, the final conclusions presented next
did not change appreciably, ESI,† Fig. S6.) This number of clusters
is equal to the number of A-based SSE families considered in this
study (i.e., A = Li, Na, halide, Ag, Cu and O). Thus, in principle, if
each SSE family appeared in one single k-means cluster, the ion
mobile species, which we typically use for naming and classifying
the SSE, would be a fine descriptor of SSE diversity.

Fig. 5(a) shows the results of our k-means clustering analysis
performed in the simplified PC1–PC2 space. It is noted that Li-
based SSEs are present in 4 out of the 6 total clusters. From
these 4 clusters, Li-based SSEs are the most abundant in 75%
of the cases and overall, they share similarities with other
Na-, halide- and O-based SSEs (although not necessarily in
terms of ion conductivity). In clusters number 5 and 3, which
are respectively characterized by dominant PC1 (‘‘elastic–vibra-
tional’’) and PC2 (‘‘vibrational’’) components, Li-based SSEs
actually conform to the 80% and 100% of the entire population.
From these outcomes, we may readily infer that (1) Li-based
SSEs are intrinsically different from Ag- and Cu-based SSEs
since these species are never found together in the same cluster
(on the other hand, Ag- and Cu-based SSEs are highly similar
because they inhabit the same cluster), and (2) Li-based
SSEs can be partitioned into several similarity subgroups
attending to their elastic and vibrational properties. Likewise,
halide-, Na- and O-based SSEs appear in 3 out of the 6 total
clusters. Thus, overall it can be concluded that the ion mobile

Fig. 5 k-Means clustering analysis results obtained for the SSE DFT-AIMD database. (a) Classification of the analyzed materials in the orthogonal
bidimensional space PC1–PC2. Materials population of each group identified in the PC1–PC2 space is expressed in terms of the mobile ion species.
(b) Classification of the analyzed materials in the orthogonal tridimensional space PC1–PC2–PC3. The materials population of each group identified in
the PC1–PC2–PC3 space is expressed in terms of the mobile ion species. The position of the cluster numbers in the PC plots coincides with the cluster
centroids. To improve visual clarity, some points have been removed from the plots without affecting the main conclusions.
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species is not a good proxy for grouping SSEs into similarity
categories.

Fig. 5(b) shows the k-means clustering results obtained in
the expanded PC1–PC2–PC3 space. In this case, the main
findings are very similar to those just explained for the reduced
P1–P2 space; namely, Li-based SSEs are present in 5 out of the
total 6 clusters and they are particularly numerous in the
majority of these groups (e.g., 88% in cluster number 4 and
67% in cluster number 6). Likewise, halide-, Na- and O-based
SSEs spread over 3 different clusters while Cu- and Ag-based
SSEs appear only in one. Interestingly, now in the three-
dimensional PC space, Li-based SSEs share similarities with
all the rest of the SSE families, including Cu- and Ag-based SSEs
(cluster number 3). It is worth noting that most subgroup
differences (i.e., relative distances between clusters centroids
located at the numbered positions in Fig. 5) are contained
within the P1–P2 plane, with the exception of cluster number 2.
Thus, the PC3 (‘‘structural’’) dimension does not appear to add
sensible information on SSE diversity and for grouping pur-
poses is practically expendable (in accordance with its relatively
small eigenvalue of E4%, Fig. 4(a)).

The presented k-means clustering analysis highlights the
difficulties encountered in the rational design of SSEs with
specific ion mobility. The bulk of the variation in the SSE family
is encoded in the elastic and vibrational properties of the
materials, not in the ion mobility or their ion mobile species.
This finding implies that materials which can be rigorously
considered as overall highly similar (because they belong to a
same k-means cluster) in practice may exhibit very different ion
diffusion and chemical features (e.g., Li-based and halide-based
SSEs). Conversely, materials which render very similar ion
mobilities and chemical compositions (e.g., Li-based SSEs
inhabiting groups 2 and 3 in Fig. 5(b)) may behave radically
different in terms of other measurable quantities. These con-
clusions are consistent with the D correlation results shown in
Fig. 2, which showed that Li-based SSEs can significantly depart
from the general trends averaged over all SSEs.

In summary, we have presented an original and comprehen-
sive SSE data-driven study on the correlations of ion diffusion
with other materials descriptors as well as a rigorous examination
of universal SSE categories based on a new and thorough DFT-
AIMD database comprising both zero-temperature and finite-T
first-principles results. It has been demonstrated that ion
diffusion correlates most noticeably with vibrational descrip-
tors that explicitly incorporate anharmonic effects (i.e., those
estimated from AIMD simulations). In the particular case of
Li-based SSEs, the ion mobility also correlates significantly with
elastic quantities like Vickers’ hardness, Pugh’s modulus ratio,
Poisson’s ratio and Cauchy’s pressure, all relevant ion-diffusion
descriptors that previously were overlooked in the literature.
Furthermore, most of the variation in the generated SSE 54-fold
dimensional space can be resolved in terms of elastic and
vibrational descriptors; ion mobility and chemical composition
are very much irrelevant when it comes to quantifying the SSE
diversity, a fact that complicates the rational design of SSEs
with targeted ion conductivities. The present data-driven study

highlights the necessity to consider finite-temperature effects
in a high-throughput fashion to better understand SSEs and
improve the predictions of related machine learning models; it
also provides new theoretical guidelines for analyzing materials
that in analogy to SSEs are highly anharmonic and technologi-
cally relevant (e.g., thermoelectrics and superconductors).

Methods
First-principles calculation outline

Ab initio calculations based on density functional theory (DFT)
were performed to analyse the physico-chemical properties of
the bulk SSEs. We performed these calculations with the VASP
code31 by following the generalized gradient approximation
to the exchange-correlation energy due to Perdew et al.32 (For
some halide compounds, possible dispersion interactions were
captured with the D3 correction scheme developed by Grimme
and co-workers.33) The projector augmented-wave method was
used to represent the ionic cores34 and for each element the
maximum possible number of valence electronic states was
considered. Wave functions were represented in a plane-wave
basis typically truncated at 750 eV. By using these parameters
and dense k-point grids for Brillouin zone integration, the
resulting zero-temperature energies were converged to within
1 meV per formula unit. In the geometry relaxations, a tolerance
of 0.005 eV Å�1 was imposed in the atomic forces.

First-principles molecular dynamics simulations

Ab initio molecular dynamics (AIMD) simulations based on DFT
were performed in the canonical (N,V,T) ensemble (i.e., con-
stant number of particles, volume, and temperature) for all the
considered bulk materials.35 The selected volumes were those
determined at zero temperature and hence thermal expansion
effects were neglected; nevertheless, based on previously
reported molecular dynamics tests,12 thermal expansion effects
are not expected to significantly affect the estimation of the ion-
transport properties of SSEs at moderate temperatures (i.e., T =
500 � 100 K). The concentration of ion vacancies in the non-
stoichiometric compounds was also considered independent of
the temperature and equal to B1–2%. The temperature in the
AIMD simulations was kept fluctuating around a set-point value
by using Nose–Hoover thermostats. Large simulation boxes
containing Nion B 200–300 atoms were employed in all the
cases and periodic boundary conditions were applied along the
three Cartesian directions. Newton’s equations of motion were
integrated by using the customary Verlet’s algorithm and a
time-step length of dt = 1.5 � 10�3 ps. G-Point sampling for
integration within the first Brillouin zone was employed in all
the AIMD simulations. The finite-temperature simulations
typically comprised long simulation times of ttotal B 100–200 ps.
For each material, we typically ran an average of 3 AIMD simula-
tions at different temperatures within the range 400 r T r 1600 K,
considering both stoichiometric and non-stoichiometric composi-
tions (ESI,† Tables S1–S3 and26). Previous tests performed on the
numerical bias stemming from the finite size of the simulation cell
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and the duration of the molecular dynamics runs reported in
previous work12 indicate that the adopted Nion and ttotal values
should provide reasonably well converged results for the ion
diffusivity and vibrational density of states of SSEs.

Estimation of key diffusive and vibrational properties
The mean-squared displacement (MSD) was estimated as

MSDðtÞ ¼ 1

Nion Nstep � nt
� ��X

Nion

i¼1

XNstep�nt

j¼1
ri tj þ t
� �

� ri tj
� ��� ��2;

(3)

where ri(tj) is the position of the migrating ion i at time tj (= j�dt),
t represents a lag time, nt = t/dt, Nion is the total number of
mobile ions, and Nstep is the total number of time steps. The
maximum nt was chosen equal to Nstep/2 in order to accumulate
enough statistics to reduce significantly the fluctuations in the
MSD(t) at large t values. The diffusion coefficient was then
obtained by using the Einstein relationship:

D ¼ lim
t!1

MSDðtÞ
6t

: (4)

In practice, we performed linear fits over the averaged MSD(t)
values calculated within the lag time interval tmax/2 r t r tmax.

To estimate the vibrational density of states (VDOS) of the
bulk SSE considering anharmonic effects, g(o), we calculated
the Fourier transform of the corresponding velocity–velocity
autocorrelation function as obtained directly from the AIMD
simulations, namely

gðoÞ ¼ 1

Nion

XNion

i

ð1
0

viðtÞ � við0Þh ieiotdt; (5)

where vi(t) represents the velocity of the ith atom at time t, and
h�i denotes the statistical average in the (N,V,T) ensemble. Once
the density of vibrational states was determined, it was straight-
forward to calculate the corresponding phonon band center
(or average lattice frequency), hoi, defined as

hoi ¼
Ð1
0
ogðoÞdoÐ1

0 gðoÞdo
; (6)

which also depends on T. Likewise, the contribution of a
particular group of ions to the full VDOS was estimated by
considering these ions alone in the summation appearing in
eqn (5). In order to determine the characteristic low-energy
phonon frequency of the bulk SSE, we defined the quantity as

o30h i ¼
Ðomax

0
ogðoÞdoÐomax

0 gðoÞdo
; (7)

for which we imposed an arbitrary cut-off frequency of omax =
30 meV. The analytical expression for other vibrational
descriptors (e.g., Fvib, Evib and CV) can be found in the
literature.36

Machine learning models
The Scikit-learn package in Python37 was used to encode the

non-numeric descriptors as well as to implement the Artificial
Neural Network (ANN) conforming our machine learning
model. For the generation of the input data, the simulations

involving all compounds, compositions and temperatures in
our SSE DFT-AIMD database were taken into consideration
(i.e., a total of 174 samples, ESI,† Tables S1–S3 and ref. 26).
The non-numeric descriptors (i.e., the diffusive chemical element,
stoichiometry, the chemical composition of the compound and
the symmetry of the relaxed structure) were encoded using the
one-hot encoding approach, and all input data were normalized
using a standard scaler. Specifically, a Multi-Layer Perceptron
Regressor (MLPR) was implemented, consisting of input, hidden
and output layers. As the output layer, the algorithm was defined
in such a way that any of the considered descriptors could be used
as the dependent variable. Consequently, the input layer was
constructed as the set of all the other descriptors. Optionally,
anharmonic descriptors could be removed from the input layer if
desired. Finally, 6 hidden layers of 200, 500, 50, 150, 70 and 100
neurons showed the best performance.

Attending to the extraction of metrics, a K-fold validation
was implemented: for each iteration, the model was required to
predict the output for one element using the rest as the training
set. Therefore, given that each element consists of a different
number of simulations (the original data set presents a variable
number of simulated temperatures and stoichiometries for each
element), the computed metrics were weighted with the number
of predicted outputs and then divided by the total amount of
simulations. The optimization of the model was monitored by
using the mean absolute percentage error (MAPE) defined as

MAPE ¼ 1

N

XN
i¼1

x0i � xi

hx0i

����
����; (8)

where N is the total number of samples in the set, {x} is the
predicted outputs, {x0} is the actual values in the DFT-AIMD
database and hx0i is the average value of {x0}. Note that these
metrics can be calculated for both the training and test sets, and
that the MAPE definition in eqn (8) differs slightly from the
usual one (in which x0

i appears in the denominator instead of
hx0i) since in our database some x0

i values are exactly equal to
zero and consequently the standard error expression would
diverge. As optimal hyperparameters, we found an Adam opti-
mizer with the square error as a loss function and a constant
learning rate of 0.0005, a rectified linear unit (ReLU) activation
function, and a = 0.05 strength for the L2 regularization term of
the loss function.

Furthermore, we also tested a kernel-ridge regression algo-
rithm for the construction of ML models. Concretely, a linear
kernel with a = 1 regularization strength provided the best
performance. However, in this case, the resulting models did
not capture the complexity of the analyzed SSEs and the MLPR
models since the corresponding MAPE values were appreaci-
ably higher (ESI,† Fig. S7).

SSE descriptor abbreviations

To analyze the similarities and dissimilarities between fast-ion
conductors, a great variety of different physical descriptors were
estimated for each SSE, which are summarized in Table 1. The
descriptors are generally classified according to the quality they
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refer to, in particular: ‘‘mechanical–elastic’’ (M–E), ‘‘diffusive–
vibrational’’ (D–V) and ‘‘structural–compositional’’ (S–C). It
may be noted that most D–V descriptors, like the mean phonon
frequency (both with and without cut-off), harmonic phonon
energy, constant-volume heat capacity, Helmholtz free energy
and entropy, were calculated for the materials as a whole (i.e.,
considering both diffusive and non-diffusive ions) and also
exclusively considering either the non-diffusive (denoted as

‘‘nd’’ in the figures) or the diffusive atoms (denoted as ‘‘d’’ in
the figures). The total number of descriptors considered in this
work is equal to 54. For the presented descriptor correlations,
PC and k-means clustering analyses, the quantities obtained
from AIMD (DFT) simulations were calculated at T = 500 �
100 K (T = 0 K).
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