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Computer-aided solid form design

Susan M. Reutzel-Edens

This themed collection of CrystEngComm on computer-aided solid form design features recent work on

the development, application, and experimental validation of algorithms for structure-based modeling and

prediction. Combined with high performance computing and rich databases, computational chemistry,

machine learning and knowledge-based approaches are making it increasingly possible to optimize

molecular and material properties in computers before synthesis commences. Highlighted in this collection

are some of the latest examples of cutting-edge science along three of the main thrust areas of

computer-aided solid form design: crystal structure modeling and prediction, the experimental validation

of predicted target structures, and the use of computer modeling for material property prediction.

Crystal structure
modeling and prediction

Crystal structure prediction (CSP)
methods continue to develop to address
what was considered in 1988 to be “one
of the continuing scandals in the
physical sciences”, to quote John
Maddox, namely the ability to predict
the crystal structure of a compound
from its chemical composition. Today,
as the paradigm has begun to shift to
computer-aided solid form design, the
reliable prediction of how a molecule
crystallizes, including its tendency to
exhibit polymorphism, is considered the
critical first step to minimizing the
experimental footprint of costly, time-
consuming, and even potentially
hazardous (in the case of energetic
materials) solid form screening. Marom
et al. (Carnegie Mellon University)
demonstrated the potential of
incorporating CSP into the digital design
of energetic materials. In this work,
experimental structures were found by
CSP for three target molecules using the
random structure generator Genarris,
and the genetic algorithm Gator. The
ease with which known polymorph
structures could be generated was

related to their location on the potential
energy surface, in particular the width of
the energy basin in which they reside.
Interestingly, an energetically
competitive, high-density structure with
a sheet packing motif, associated with
reduced detonation power and
sensitivity, was identified as a potentially
viable polymorph for one of the energetic
targets, DATB (2,4,6-trinitrobenzene-1,3-
diamine) (DOI: 10.1039/d1ce00745a).

Inspired by the Cambridge
Crystallographic Data Centre (CCDC)-
sponsored blind tests of CSP, which
have benchmarked the progress of the
algorithms over more than two decades,
and with the emergence of commercial
CSP providers, structure prediction is
now being widely applied across the
pharmaceutical industry. However, the
application of CSP to pharmaceutical
molecules, which have been thoroughly
experimentally screened for
polymorphs, has revealed two problems:
computational overprediction and
experimental underestimation.
Salvalaglio et al. (University College
London) have reported the use of large-
scale, physics-based molecular
dynamics simulations to reduce the
problem of crystal structure
overprediction. Molecular dynamics
(MD) simulations and enhanced
sampling methods were used to
simulate the crystal structures of

ibuprofen at finite temperature and
pressure, which effectively melted some
of the lattice energy minima, while
coalescing others, separated by small
barriers, into a smaller number of more
stable geometries. The simulation
workflow not only significantly reduced
the number of predicted crystal
packings to a subset containing the
experimentally known ibuprofen
polymorphs, but it also provided
quantitative insights into the emergence
of conformational and orientational
disorder and the persistence of
intermolecular hydrogen-bonding
interaction motifs at finite temperature
(DOI: 10.1039/d1ce00616a).

As an alternative to the more
expensive and time-consuming physics-
based CSP-based approach, Abramov
et al. (XtalPi Inc.) explored the
combined use of physics-based
(conductor-like screening model for real
solvents, COSMO-RS) and machine
learning (ML) modeling approaches for
fast virtual cocrystal screening. In this
work, an overall strategy to model the
component miscibility (based on
COSMO-RS excess enthalpy) and
crystallinity (based on random forest
ML) contributions to cocrystal
formation proved superior for rapidly
identifying the most promising cocrystal
formers for ibuprofen (DOI: 10.1039/
d1ce00587a).
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The challenges posed by
computational overprediction and the
experimental underestimation of
polymorphism have also inspired data-
driven approaches for polymorph risk
assessment. Knowledge-based tools
developed by the CCDC, for example,
show how a given organic molecule is
statistically likely to crystallize based on
the 1.1+ million structures in the
Cambridge Structural Database (CSD)
that have clearly overcome kinetic
barriers to crystal nucleation and
growth. Doherty et al. (GlaxoSmithKline
(GSK)), in reporting a survey of the GSK
small molecule crystal structure
database, exploited differences between
the proprietary data and the CSD drug
subset (CSD-DS) to build a more reliable
knowledge-based polymorphism risk
assessment based on hydrogen bond
propensity (HBP). Adding chemically
relevant structures from the proprietary
GSK database to the training data set of
published CSD-DS data ensured good
coverage of functional groups to
improve the HBP logistic regression
model (DOI: 10.1039/d1ce00665g).

Experimental validation

The prediction of energetically
competitive structures has motivated
experimentalists to find them. Braun
(University of Innsbruck) reported an
experimental investigation targeting
computationally generated structures of
the cocrystal former, 3-hydroxybenzoic
acid. The discovery of a third
polymorph has shown that expanding
the scope of experimental solid form
screening can pay dividends in
producing novel forms. However, it as
yet remains impossible to predict if a
given structure will crystallize, let alone
how to target it in an experimental
design (DOI: 10.1039/d1ce00159k).

Cruz-Cabeza et al. (University of
Manchester), in reporting the discovery
of the ninth polymorph of the well-
studied tolfenamic acid (TFA), have
shown that when it comes to polymorph
discovery, special techniques are no
surrogate for careful observation. The
new TFA polymorph, which had been
predicted computationally from a

previous CSP study, crystallised
concomitantly with the more common
forms I and II by conventional cooling
crystallization from isopropanol. The
late appearance of form IX was
explained in terms of its overall higher
intrinsic rugosity relative to those of
forms I and II, building on the idea that
polymorphic forms with rougher
surfaces may have higher energy
barriers to cross for nucleation, as well
as the absence of aromatic stacking
interactions leading to slower crystal
growth relative to the competing
polymorphs (DOI: 10.1039/d1ce00343g).

Material properties

To achieve theory-driven crystal
engineering, where the properties of
molecular materials are optimized in a
computer, the ability to reliably predict
crystal structures must be met with
accurate methods to predict the solid
state properties of interest. Feng et al.
(Dalhousie University) applied a novel
computational methodology to model the
photoluminescent behaviour of ROY in
eight of its polymorphs and a series of
9-acetylanthracene cocrystals, showing
how isolated-molecule and dispersion-
bound periodic boundary DFT
calculations could be combined in a cost-
effective way. Whereas the polymorph-
dependent photoluminescence (color
zoning) of ROY was found to be
controlled primarily by intramolecular
geometry, and hence could be modelled
for isolated crystal conformers, the
periodic crystal environment needed to
be accounted for in cases where the
emission properties are driven by
intermolecular charge transfer, as seen in
the cocrystals (DOI: 10.1039/d1ce00383f).

Optimizing the physical–chemical
properties of organic crystals requires a
molecular level understanding not only
of the bulk crystal structure, but also of
the particle characteristics and surface
chemistry, where in many cases most of
the action takes place. With respect to
surface chemistry, Rantanen et al.
(University of Copenhagen) combined
atomic force microscopy with MD
simulations to examine the solid–
solution interface of paracetamol in

water–ethanol mixtures, showing the
dramatic effects that the solvent can
have on surface crystallinity and
hydrophobicity. Mediated by dynamic
heterogeneous disordered surface layers
at the solid–solution interface, different
critical surface properties could be
manipulated by choice of the solvent
composition (DOI: 10.1039/d1ce00209k).

The collection of papers in this
themed collection highlights the
enormous progress all-around in
developing and applying crystal
modeling and prediction to mimimize
the risk of late-appearing polymorphs
and to optimize the bulk and surface
properties of organic materials. These
recent papers build on great
contributions toward computer-aided
solid form design, some of which were
highlighted in the 2020 Editor's
Collection under the same name.
However, despite the considerable
attention paid to the subject in recent
years, we are far from being able to
engineer material properties in a
computer to, say, the level of fidelity
required by the aviation industry for
designing airplanes. Until physics-based
computational approaches achieve the
required level of accuracy and
affordability to not just predict a
thermodynamically feasible crystal
structure and its properties, but also the
experimental conditions to make it (for
which better understanding of crystal
nucleation and growth will be required),
trial-and-error experimentation will
continue to feature prominently in
organic crystal design and material
property optimization.

The progress toward computer-aided
solid form design has nonetheless
generated much excitement and interest
across industry and academia. Whether
the goal is to move to more material-
sparing approaches, maximize R&D
efficiency, inform decision making, or
minimize downstream risk, fit-for-
purpose modeling and simulation tools
have already proven invaluable.
Experimental data of the highest quality
will, of course, continue to underpin the
entire digital design enterprise, providing
the required benchmarks for
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computational algorithm development,
as well as inputs to data-driven (ML and
informatics) approaches and the all-
important validation of modeling and
prediction tools. For ML and informatics-
based material property predictions, the
models will only be as good as the
underlying data, which speaks to the
need for making good data FAIR
(findable, accessible, interoperable and
retrievable) and ensuring that it is
representative. The 1.1+ million crystal
structures in the CSD, for example,
provide excellent substrates for ML

model building, however, some
chemistries are sparse, evidenced by the
improvement in model predictions with
inclusion of proprietary structural data.
Beyond this, critical gaps still exist
because negative data, which are helpful
for testing hypotheses and required for
binary classification models, oftentimes
go unpublished and provisions
(funding, collaboration with expert
experimentalists) are not always made for
collecting high-quality experimental data.

Digital approaches to solid form
property design and optimization will

inevitably improve as tools and
algorithms to reliably and efficiently
model energies (thermodynamics) and
account for nucleation and growth
kinetics under crystallization process
relevant conditions evolve. This themed
collection has highlighted a number of
developments, which continue to lay the
foundation for the future state of
computer-aided solid form design,
whereby the right crystal form is
designed for the right application,
allowing the right material to be
produced the first time.
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