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The first total syntheses of schilancidilactones A and B, schilancitrilactone A, and 20-epi-schilancitrilactone
A have been accomplished using a nickel-catalyzed cross coupling of alkyl bromide with vinyl stannane as
the final step. The other key steps include late-stage C(sp®)—H bromination, the oxidative cleavage of a diol
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Schisandraceae triterpenoids have held great interest for
synthetic organic chemists because of their molecular struc-
tures and diverse biological properties.' In 2011, Yang and co-
workers made a breakthrough in the total synthesis of schin-
dilactone A.> Since then, rubriflordilactone A has been synthe-
sized by Li* and Anderson,® respectively. Our group has
disclosed the total syntheses of schilancitrilactones B and C (4
and 5, Fig. 1).° Recently, the syntheses of propindilactone G,*

3: Schilancitrilactone A (R = a-Me) 4
3": 20-epi-Schilancitrilactone A (R = -Me) 5:

hilancitrilactone B (R = a-Me)
hilancitrilactone C (R = p-Me)

Fig.1 Schilancidilactones A and B, schilancitrilactones A, B and C, and
20-epi-schilancitrilactone A.
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condensation to generate the A ring of schilancitrilactone A and 20-epi-schilancitrilactone A.

rubriflordilactone B,” 19-dehydroxyl arisandilactone A,* and
lancifodilactone G acetate® have been accomplished.

Schilancidilactones A and B and schilancitrilactone A (1-3,
Fig. 1) were isolated by Sun and co-workers from the stems of
Schisandra lancifolia.*® Preliminary biological assays indicated
that schilancidilactone A (1) showed biological activities for
inhibiting HIV-1, and schilancitrilactone A (3) exhibited anti-
feedant activity, while schilancidilactone B (2) was not tested for
further bioactivities due to the limited amount isolated.
Compared with schilancitrilactones B and C (4 and 5), schi-
lancidilactones A and B (1 and 2) each possess a 7/5/5/5 tetra-
cyclic core bearing eight stereocenters, and schilancitrilactone
A (3) and its epimer (3') each contain a 5/5/7/5/5/5 hexacyclic
core bearing eleven stereocenters. The synthesis of these
molecules is challenging. To the best of our knowledge, no
syntheses of schilancidilactones A and B (1 and 2), schilanci-
trilactone A (3) and its epimer 3’ have been reported to date. In
this communication, we present the first total syntheses of
schilancidilactones A and B (1 and 2), schilancitrilactone A (3),
and 20-epi-schilancitrilactone A (3') using late-stage nickel-
catalyzed intermolecular cross coupling for C-C bond forma-
tion as a key step.

In a retrosynthetic analysis (Scheme 1), we envisioned that
schilancidilactones A and B (1 and 2), schilancitrilactone A (3),
and 20-epi-schilancitrilactone A (3') might be synthesized by the
late-stage nickel-catalyzed intermolecular cross coupling of
vinyl stannane 6 with alkyl bromides 7 and 10, respectively.
Alkyl bromide 7 was expected to arise by the oxidative cleavage
of a diol, followed by late-stage C(sp®)-H bromination at the C20
center of compound 8, which in turn could be constructed from
compound 9 by a series of steps. Alkyl bromide 10 would arise
from compound 11 through Dieckmann-type condensation to
generate the A ring and late-stage C(sp®)-H bromination at the
C20 center. Compound 11 in turn could be prepared from

This journal is © The Royal Society of Chemistry 2017
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Scheme 1 The retrosynthetic analysis of schilancidilactones A and B,
schilancitrilactone A, and 20-epi-schilancitrilactone A.

building blocks 12 and 13 using the chemistry developed in our
total syntheses of 4 and 5. Building blocks 6, 9 and 13 were
common intermediates in our total syntheses of 4 and 5.°
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Scheme 2 The reagents and conditions: (a) LDA, THF, and —78 °C,
then P(OMe)s and O,, 77% yield; (b) VO(acac), (30 mol%), TBHP, DCM,
rt, 97% yield; (c) MeMgBr, THF, and 0 °C, then PDC, DCM, rt, 48% yield
for the 2 steps; (d) Sml,, THF, —78 °C, 60% yield; (e) PyHBrs, THF, rt,
81%, d.r. (at C20) = 7 : 1. LDA = lithium N,N-diisopropylamide, PDC =
pyridinium dichromate, and PyHBrz = pyridinium tribromide.
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The synthesis commenced with the production of alkyl
bromide 7 (Scheme 2). The treatment of compound 9 with LDA
in THF and the subsequent reaction with O, in the presence of
P(OMe); gave the desired alcohol 14 in 77% yield."* The epoxi-
dation of 14 with VO(acac), and TBHP gave epoxide 15 in 97%
yield as a single isomer."” The configuration of epoxide 15 was
determined by the X-ray crystallographic analysis. The addition
of methyl magnesium bromide provided the corresponding diol
8 (d.r. = 1.5: 1 at C1), followed by the oxidative cleavage of the
diol using PDC to give ketone 16 in 48% overall yield (2 steps).*?
Subsequently, intermediate 16 underwent reductive ring
opening with SmlI, to give alcohol 17 in 60% yield,** which was
converted to the corresponding alkyl bromide 7 through late
stage C(sp®)-H bromination at C20 with pyridinium tribromide
(PyHBr3) in 81% yield (d.r. = 7 : 1 at C20)." The selectivity of
bromination at C20 rather than C19 might result from less
steric hindrance at C20 in compound 17. The initial attempts to
achieve late-stage C(sp®)-H iodination at C20 failed.

With alkyl bromide 7 in hand, we attempted to finish the
total syntheses of schilancidilactones A and B. In our initial
synthetic design, we planned to take advantage of the inter-
molecular radical addition reaction to form the C20-C22 bond
based on the chemistry developed in our total syntheses of 4
and 5. The traditional radical conditions (AIBN and BuzSnH) led
to the hydrodebromination product and no desired product was
observed. Photoredox catalysis'® was also evaluated and no
desired product was found. Inspired by recent advances in the
nickel catalyzed cross coupling of alkyl halides for the forma-
tion of C-C bonds,'” we postulated our total syntheses of 1 and 2
to involve a late-stage cross coupling reaction with nickel to
form the C20-C22 linkage. So we investigated the nickel cata-
lyzed cross coupling reaction of alkyl bromide 18 with vinyl
stannane 6 as the model study. Firstly, the conditions developed
by the Fu group*® were tested, but no desired product was found
(Table 1, entry 1). The hydrodebromination product was a major
side product under this condition. With Ni(cod), as the catalyst,
the various ligands were evaluated and bis(diphenylphosphino)
methane (dppm) was found to give a 28% yield of 19 and 28%
yield of 19’ (Table 1, entries 2-6). No desired product was
observed with NiCl, or Ni(acac), as the catalysts (Table 1, entries
7 and 8). The amounts of Ni(cod), and dppm were crucial for the
reaction to proceed efficiently. When 40 mol% Ni(cod), and
60 mol% dppm were used, a total 80% yield was observed (Table
1, entry 10). After thorough optimization of the reaction
conditions (see more details in the ESI}), reactions with
40 mol% Ni(cod), and 60 mol% dppm in 1,4-dioxane at 60 °C
under N, were found to give high yields of the desired product.
The Z- and E-products might refer to the radical being involved
in this cross coupling reaction. Perhaps unsurprisingly, no
reaction occurred when a radical inhibitor, such as TEMPO, was
added (Table 1, entry 11).

With the optimum reaction conditions, schilancidilactones
A (1, 36%) and B (2, 7%) were synthesized from alkyl bromide 7
and vinyl stannane 6 in 43% total yield (Scheme 3). The char-
acterization data obtained for synthetic 1 and 2 were identical to
the data reported for the natural products.**

Chem. Sci., 2017, 8, 7246-7250 | 7247
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Table 1 The investigation of the conditions for cross coupling
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H
o conditions )ﬁ/ /[;
18 60 °C

Entry Conditions Yield (%) (19/19')¢
1 NiCl, (10 mol%), 2,2-bipyridine, KO‘Bu, -BuOH/i-BuOH 0

2 Ni(cod), (10 mol%), 2,2-bipyridine, dioxane 0

3 Ni(cod), (10 mol%), dppf, dioxane Trace
4 Ni(cod), (10 mol%), dppm, dioxane 28/28
5 Ni(cod), (10 mol%), PPh;, dioxane Trace
6 Ni(cod), (10 mol%), dppp, dioxane 0

7 NiCl, (10 mol%), dppm, dioxane 0

8 Ni(acac), (10 mol%), dppm, dioxane 0

9 Ni(cod), (25 mol%), dppm, dioxane 30/30
10 Ni(cod), (40 mol%), dppm, dioxane 40/40
11 Ni(cod), (40 mol%), dppm, TEMPO, dioxane 0

“ The yields were determined by "H NMR spectroscopy with benzyl chloride as the internal standard. 19/19’ were each formed as a mixture of the

diastereomers at the C20 position (see more details in the ESI).

7 1: Schilancidilactone A (R = B-CHs) 36%
2: Schilancidilactone B (R = a-CH3) 7%

Scheme 3 The reagents and conditions: (a) 6, Ni(cod), (40 mol%),
dppm (60 mol%), 1,4-dioxane, 60 °C, 36% yield for 1, 7% yield for 2.
cod = 1,5-cyclooctadiene and dppm = bis(diphenylphosphino)
methane.

Next, we directed our attention to the syntheses of schi-
lancitrilactone A (3) and 20-epi-schilancitrilactone A (3').
Scheme 4 illustrates the preparation of building block alkyl

/
O._o 3 PPhy, by,

AXANA = O _0
e imidazole O/\OCJ . Me
93% . 3\/b hY
o
HO “\ |
20 21, 31%
oTBS
/

then HCI ( aq) Me c) TBSCI

70% for 2 steps

c“ 0. 0o
|
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Scheme 4 The reagents and conditions: (a) 20 (d.r. at C4 = 2: 1),
PPhs, I, imidazole, 0 °C to rt, THF, 93% yield; (b) NaOMe and MeOH/

THEF, then HCL, rt; (c) TBSCL, imidazole, DCM, rt, 70% yield for the 2
steps.
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iodide 12. Alcohol 20 ° (d.r. at C4 = 2 : 1) was converted to alkyl
iodide 21 with I,, in the presence of Ph;P and imidazole, in 62%
yield, together with 21’ in 31% yield.*® The structure of isomer
21" was confirmed by X-ray crystallographic analysis. The
methanolysis of iodolactone 21 with NaOMe provided epoxide
22> followed by selective epoxide opening and efficient cycli-
zation to deliver lactone 23. The protection of the primary
hydroxyl group in 23 as a TBS ether furnished the desired alkyl
iodide 12 in 70% yield for the two steps.

We now moved to the stage for the completion of the total
syntheses of schilancitrilactone A (3) and its epimer (3'). Based
on the chemistry developed in our total syntheses of 4 and 5 and
the precedent research by Yang’s group (Scheme 5),>*° lactone
12 was treated with LDA in THF and the resulting enolate was
reacted with aldehyde 13 to give compound 24 in 88% yield
(dr. = 9:1 at C19), which then underwent dehydration to
obtain a 3 :1 mixture of diene 25 in 93% yield.”* Under the
Luche conditions [Cul, Zn],** product 26 was prepared in 56%
yield (d.r. = 7 : 1 at C10) through intramolecular radical cycli-
zation. The oxidation of compound 26 by reaction with LDA in
the presence of O, and P(OMe); gave alcohol 27, which could be
converted into acetate 11 in 93% yield. The treatment of acetate
11 with LDA formed lactone 28 through intramolecular
Dieckmann-type condensation in 82% yield,>® followed by
dehydration with Martin’s sulfurane to give the unsaturated
lactone 29 in 75% yield.”® The selective reduction of 29 with r-
selectride generated lactone 30, which underwent hydration
under Mukaiyama conditions [Co(acac),, PhSiHj;, O,] to install
a tertiary alcohol and give compound 31.>* Finally, we used late-
stage C(sp®)-H bromination followed by nickel catalyzed cross
coupling to finish the total synthesis of schilancitrilacetone A

©

This journal is © The Royal Society of Chemistry 2017
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i) Co(acac), k) 6, Ni(cod),
Oy, PhSiH; j) PyHBr3 dppm
45% Me 759 50% \
TBSO—" HO— HO—

3: Schilancitrilactone A (R = o-CH3) 10%
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Scheme 5 The reagents and conditions: (a) LDA, THF, —78 °C, then 13, 88% yield, d.r. (at C19) =9 : 1; (b) CuCl, (50 mol%), EDC, toluene, 80 °C,
93% yield; (c) Cul, Zn, pyridine/H,O, ultrasound, rt, 56% yield, d.r. (at C10) = 7 : 1; (d) LDA, THF, and —78 °C, then P(OMe)s, O,, 64% yield for 27, d.r.
(at C10) =27 : 1; (e) Ac0, EtzN, DCM, rt, 93% yield; (f) LDA, THF, —78 °C, 82% yield; (g) Martin’s sulfurane, DCM, rt, 75% yield; (h) L-selectride, THF,
—78 °C, 87% yield; (i) Co(acac), (20 mol%), PhSiHz, O,, 1,4-dioxane, rt, 45% yield for 31, d.r. (at C9) = 1.3 : 1; (j) PyHBrsz, THF, rt, 75% yield, d.r. (at
C20) = 2:1; (k) 6, Ni(cod), (40 mol%), dppm (60 mol%), 1,4-dioxane, 60 °C, 10% yield for 3, 40% yield for 20-epimer 3. EDC = 1-(3-N,N-
dimethylaminopropyl)-3-ethylcarbodiimide, Martin's sulfurane = bis-[o,a-bis(trifluoromethyl)benzenemethanolato]-diphenysulfur, and L-

selectride = lithium tri-sec-butylborohydride.

(3) along with its C20-epimer (3'). The spectra and physical
properties of schilancitrilacetone A (3) are identical to those
reported for the natural product.'®®

Conclusions

In summary, we accomplished the first total syntheses of
schilancidilactones A and B, schilancitrilactone A, and 20-epi-
schilancitrilactone A. A nickel-catalyzed intermolecular cross
coupling of alkyl bromide with vinyl stannane was developed
to form the C-C bond in the late stage as a key step. In this way,
the right hand moieties present in this family of natural
products were prepared in the final step of each total
synthesis. This strategy shows promise for entry into other
derivatives and analogues by way of a common intermediate,
which may facilitate the biological studies of Schisandraceae
titerpenoids.
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