Lite Version|Standard version

To gain access to this content please
Log in via your home Institution.
Log in with your member or subscriber username and password.
Download

In an effort to isolate the chalcogen-rich niobium analogue of [(Cp*Ta)3(μ-S)33-S)3BH], the room temperature reaction of [Cp*NbCl4] (Cp* = η5-C5Me5) with Li[BH2S3] was carried out. Although the objective of isolating the niobium analogue was not achieved, the reaction yielded a homocubane-type cluster [(Cp*Nb)3(μ-S)33-S)3(μ-S)BH], 1, and a hexa-sulfido cluster [(Cp*Nb)3(μ-S)6], 2. Cluster 1 is a notable example of a homocubane-type cluster in which one of the vertices of the homocubane is missing. Compound 1 may be considered as a hypo-electronic cluster with an electron count of 64 cve (cve = cluster valence electrons), whereas compound 2 shows the presence of two doubly bridging η1-S around each Nb–Nb bond. On the other hand, the room temperature reaction of [Cp*TaCl4] with selenaborate ligand, [LiBH2Se3], led to the formation of [(Cp*Ta)3(μ-Se)4{μ-Se2(Se2)}], 3. Compound 3 is one of the rarest examples having a Ta3Se6 core structure with a unique diselenide bridging fragment. The presence of a short Se–Se bond of this diselenide unit makes this molecule of further interest. All these compounds were characterized by 1H, 11B{1H} and 13C{1H} NMR spectroscopy, infrared spectroscopy, mass spectrometry, and single-crystal X-ray crystallography. Density functional theory (DFT) calculations were carried out to provide insight into the bonding and electronic structures of these chalcogen-rich trimetallic clusters.

Graphical abstract: Chalcogen stabilized trimetallic clusters: synthesis, structures, and bonding of [(Cp*M)3(E)6+m(BH)n] (M = Nb or Ta; E = S or Se; m = 0 or 1 or 2; n = 0 or 1)

Page: ^ Top