A first-principles examination of the ice–cellulose interface: towards bioinspired antifreeze design

Abstract

Examination of binding of cellulose to ice using ab initio modeling reveals that new C–O bonds are formed on the basal ice surfaces, where some of the O atoms are exposed at the surface due to missing H bonds. Further analysis suggests that the cellulose unit binds in such a way as to form a tetrahedral arrangement at the ice surface, evidenced by a geometric measure of tetrahedrality. This hypothesis is further validated for both primary and secondary prismatic planes. This leads us to conclude that in the case of cellulose molecules, binding at ice is dependent on preserving its tetrahedral bonding arrangement. Our findings suggest that the idea of tetrahedrality is very widely applicable to coordination ranging from water to ice-binding proteins, highlighting a design criterion for novel ice-binding/antifreeze proteins/materials.

Graphical abstract: A first-principles examination of the ice–cellulose interface: towards bioinspired antifreeze design

Supplementary files

Transparent peer review

To support increased transparency, we offer authors the option to publish the peer review history alongside their article.

View this article’s peer review history

Article information

Article type
Paper
Submitted
28 Jul 2025
Accepted
24 Oct 2025
First published
27 Oct 2025

Mol. Syst. Des. Eng., 2025, Advance Article

A first-principles examination of the ice–cellulose interface: towards bioinspired antifreeze design

A. Kumar and D. Gersappe, Mol. Syst. Des. Eng., 2025, Advance Article , DOI: 10.1039/D5ME00137D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements