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-based prediction of fish acute
mortality: implementation, interpretation, and
regulatory relevance†

Lilian Gasser, ‡a Christoph Schür, ‡*b Fernando Perez-Cruz, ac

Kristin Schirmer bd and Marco Baity-Jesi b

Regulation of chemicals requires knowledge of their toxicological effects on a large number of species,

which has traditionally been acquired through in vivo testing. The recent effort to find alternatives based

on machine learning, however, has not focused on guaranteeing transparency, comparability and

reproducibility, which makes it difficult to assess advantages and disadvantages of these methods. Also,

comparable baseline performances are needed. In this study, we trained regression models on the

ADORE “t-F2F” challenge proposed in [Schür et al., Nature Scientific data, 2023] to predict acute

mortality, measured as LC50 (lethal concentration 50), of organic compounds on fishes. We trained

LASSO, random forest (RF), XGBoost, Gaussian process (GP) regression models, and found a series of

aspects that are stable across models: (i) using mass or molar concentrations does not affect

performances; (ii) the performances are only weakly dependent on the molecular representations of the

chemicals, but (iii) strongly on how the data is split. Overall, the tree-based models RF and XGBoost

performed best and we were able to predict the log10-transformed LC50 with a root mean square error

of 0.90, which corresponds to an order of magnitude on the original LC50 scale. On a local level, on the

other hand, the models are not able to consistently predict the toxicity of individual chemicals accurately

enough. Predictions for single chemicals are mostly influenced by a few chemical properties while

taxonomic traits are not captured sufficiently by the models. We discuss technical and conceptual

improvements for these challenges to enhance the suitability of in silico methods to environmental

hazard assessment. Accordingly, this work showcases state-of-the-art models and contributes to the

ongoing discussion on regulatory integration.
Environmental signicance

Conventional environmental hazard assessment in its current form will not be able to adapt to the growing need for toxicity testing. Alternative methods, such as
toxicity prediction through machine learning, could fulll that need in an economically and ethically sound manner. Proper implementation, documentation,
and the integration into the regulatory process are prerequisites for the usability and acceptance of these models.
1 Introduction

Chemical regulation aims to ensure the safety of humans and
the environment, which is traditionally based on animal
testing. As an example, in the European Union, the legislation
for the Registration, Evaluation, Authorisation and Restriction
Switzerland

ic Science and Technology, Dübendorf,
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tion (ESI) available. See DOI:

is work.

4–1138
of Chemicals (REACH)1 requires (invertebrate) animal tests to
be performed for chemicals with a yearly import or production
volume of more than 1 ton. Acute (i.e., short-term) shmortality
tests are required for chemicals with an import or production
volume of 10 tons per annum or more and are standardized
through the OECD test guideline (TG) 203.2 The global use of
birds and sh was estimated to range between 440 000 and 2.2
million individuals at a cost upwards of $39 million per
annum.3 Consequently, reducing the use of animals and, more
specically, sh acute toxicity testing has a high priority in
chemical hazard assessment, both from an economical and
ethical perspective.

In the past decade, there has been an increased effort
towards the adoption of new approach methods (NAMs), i.e.,
implementing and validating alternative methods to move
© 2024 The Author(s). Published by the Royal Society of Chemistry
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away from measuring chemical toxicity in vivo with the sacri-
ce of animals. Computer-based (in silico) methods have the
potential to supplement, if not replace, animal testing
through predictive toxicology based on historical data.4

Increased computational power, accessibility and ease of use
of soware, and recognition of the potential by legislators has
contributed to increased research efforts of in silico alternative
methods.

Quantitative structure activity relationship (QSAR) modeling
is the umbrella term for models based on the similarity-
property principle, i.e., the assumption that chemicals with
similar structure will elicit a similar biological response. In the
eld of toxicity, these models are sometimes referred to as
quantitative structure toxicity relationship (QSTR) models,
which have a long history of predicting toxicological outcomes
using either linear or nonlinear relationships between chemical
descriptors and a biological response.5 More than 10 000 QSAR
models were published or publicly available in 2023.6 Recently,
QSAR research has started to incorporate machine learning
(ML), i.e., computational methods that are able to nd hidden
patterns in large amounts of data without explicit programming
and, on the basis of said patterns, are able to make predictions.
The application of ML comes with the caveat that domain-
experts are not necessarily also ML experts.

QSARs are characterized by the relationship they are
applied to, i.e., the chemical descriptor(s) used to predict
a biological outcome, and not by the underlying modeling
approach. Hence, integrating information beyond chemical
descriptors is not adequately captured by the term QSAR.
Zubrod et al. (2023) referred to models also including species-
specic and experimental information as Bio-QSARs.7 ML
methods can be applied to both QSARs and extended QSARs
with non-chemical features.

So far, mammal-centered toxicology was the primary focus of
ML-based predictive toxicology. Notably, Luechtefeld et al.
(2018) implemented read-across structure activity relationship
(RASAR) based on binary ngerprints and Jaccard distances,
which they applied to different endpoint groups.8 They
compared themodel performance to the variability of the in vivo
data, which they found to be similar, although their inclusion of
modeled data and lack of transparent reporting and data
availability have been criticized.9 In their response to the
critique, the authors explicitly point out that their approach
differs from QSAR by the use of big data and articial intelli-
gence as opposed to small and highly curated datasets and
conclude that certain criticisms to QSARs do not apply to their
approach.10 Wu et al. (2022) brought Luechtefeld et al.’s
approach to the realm of ecotoxicology by applying it to toxicity
classication of acute sh mortality11 and found that their
RASAR models did not outperform random forest (RF) models.

Despite getting less attention of ML than mammal-centered
toxicology, several studies predict ecotoxicological outcomes
using regression. They differ in the employed approaches, most
notably in the datasets used and, therefore, in the chemical and
taxonomic spaces.7,12–14

Nevertheless, the adoption of ML in ecotoxicological
research is still in its infancy, which comes with inherent
© 2024 The Author(s). Published by the Royal Society of Chemistry
pitfalls. Data leakage, one of the most common issues when
applying ML models, “is a spurious relationship between the
independent variables and the target variable that arises as an
artifact of the data collection, sampling, or pre-processing
strategy. Since the spurious relationship won't be present in
the distribution about which scientic claims aremade, leakage
usually leads to inated estimates of model performance.”15 It
arises when data points from repeated measurements are
assigned to both the training and the test set and results in the
model merely recalling the relationship between the response
and feature combinations instead of making a prediction based
on a learned pattern. Data leakage can also occur when infor-
mation about the response is introduced that should not
legitimately be used for modeling.16 As of 2023, the issue of data
leakage has been described to affect 329 papers across 17
research elds.15 Stock et al. (2023) discussed domain-specic
risks of data leakage for the use of ML models in ecology and
argued for the creation of domain-specic guidelines to avoid
data leakage and related phenomena, such as short-cut
learning.17

Besides the issue of data leakage, predictive ecotoxicology
lacks commonly recognized best practices such as benchmark
datasets and reporting standards.15,18–21 As a part of ML-based
research, it faces a reproducibility crisis, partly caused by
inconsistent and in-transparent reporting (including under-
lying computer code), which prevents peer-reviewers from
adequately assessing the ndings, the modeling, and the data
those ndings are based on. Several efforts aim to sensitize
researchers to common pitfalls20,21 and to motivate them to
adopt checklist-based reporting standards, such as REFORMS
proposed by Kapoor et al. (2023).22 For QSAR models, similar
quality standards have already been proposed (with 49 assess-
ment criteria covering various aspects of QSAR development,
documentation and use)18 and further developed specically for
the application of ML methods to QSARs.19 Furthermore, the
FAIR (Findable, Accessible, Interoperable, Reusable) principles,
which were developed for data sharing, could be adapted to
model description and deployment and therefore help to
improve the reproducibility and large-scale adoption of these
methods, and eventually turn them into a (re)useable resource
for chemical safety assessment.6

Data handling, i.e., curation, processing, and use in
a modeling framework, plays an equally crucial role to avoid
reproducibility issues. It requires both domain and ML exper-
tise. Model applicability and performance highly depends on
the data it was trained on. There is a trade-off between restric-
tive data ltering leading to narrowly applicable models, that
are thus not very relevant, and unrestrictive data ltering
yielding models that might cover a large range of species and
chemicals, but are not accurate enough.23

This paper is based on the well-characterized benchmark
dataset ADORE for acute mortality in ecotoxicology. We inves-
tigate the application of ML methods to sh acute toxicity,
namely the prediction challenge “t-F2F” on the taxonomic
group sh covering 140 species and 1905 chemicals. Six
molecular representations are available to computationally
represent molecules: the ngerprints MACCS, PubChem,
Environ. Sci.: Adv., 2024, 3, 1124–1138 | 1125
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Morgan, ToxPrint, the molecular descriptor Mordred, and the
mol2vec embedding. Using this dataset allows to produce
reproducible and comparable results that can act as a bench-
mark for future studies. We apply the four models LASSO,
random forest, XGBoost, and Gaussian process regression. We
train all combinations of molecular representations and
models. We then analyse the model results to gain a better
understanding of relevant features and aspects of the dataset.
We aim to present state-of-the-art methods in an accessible
manner for modeling experts, (eco)toxicologists, and regulators,
alike. For the sake of transparency, we perform a self-
assessment of the dataset, models, and reporting in accor-
dance with proposed best practices.15,19,22
2 Data

In this section, we introduce the data focusing on the relevant
challenge, response values, features, and data splits.
Fig. 1 Histograms of log10-transformed LC50 (lethal concentration
50) in mass and molar units.
2.1 Data generation and description

The benchmark dataset ADORE on acute mortality contains
toxicity tests of three relevant taxonomic groups (sh, crusta-
ceans, and algae).24 The core of ADORE originates from the
ECOTOX database,25 which was harmonized and pre-ltered to
only contain entries suitable to model acute toxicity in sh,
crustaceans, and algae. This core dataset was expanded with
taxonomic and chemical information from various sources and
then ltered to only contain entries on acute mortality for which
information from all sources is available. The ltered dataset
mainly contains entries from organic chemicals. In total, the
ADORE dataset contains 33 448 entries, of which more than
75%, i.e., 26 114 entries are on sh, 6630 entries on crustaceans,
and 704 entries on algae. Please refer to the corresponding
paper for a detailed description of the dataset.24 Here, we
summarize the aspects relevant for this study.
2.2 Focus on sh challenge

The ADORE challenges on acute mortality cover three levels of
complexity. The most complex challenges are based on the
whole dataset including all three taxonomic groups (sh, crus-
taceans, and algae). At an intermediate level of complexity,
challenges focus on one taxonomic group. Finally, the least
complex challenges are restricted to single, well-represented
test species. In this study, we focused on the taxonomic group
of sh. Using the “t-F2F” challenge, we aimed to nd the best
combination of model and molecular representation with the
corresponding features to predict acute mortality across 140
sh species.
2.3 Response values

The dataset contains only entries with the endpoint lethal
concentration 50 (LC50) for sh mortality. All LC50 values were
converted to mg L−1 and mol L−1, and then log10-transformed.
In this work, we predict both log molar and log mass LC50
(Fig. 1).
1126 | Environ. Sci.: Adv., 2024, 3, 1124–1138
2.4 Description and processing of modeling features

The features can be summarized in three categories: experi-
mental, chemical, and taxonomic. The responses and the
modeling features are listed in the ESI Table 1.†

The experimental features describe the experimental condi-
tions, specically, observation duration, media type, exposure
type, and concentration type that we used as the four experi-
mental features in the models. The observation duration is
ordinal with four levels (24, 48, 72, 96 hours), which were
transformed to be in the range of [0, 1]. The other three features
are categorical and were one-hot-encoded (i.e., translated to
a binary vector for each level indicating its presence or absence).
We do not deem the other experimental information included
in the dataset relevant, and for some features, we argue in ref.
24 against using them for modeling.

The chemical features can be split in two sub-categories.
Firstly, we include computable properties such as molecular
weight (in g mol−1), water solubility (in mg L−1), melting point
(in °C), and the octanol–water partition coefficient (log Kow, log
P), for which positive/higher values indicate higher lipophilicity
of a compound. We used these four features, standardized
based on the training data, and opted against using the other
computable features in the dataset, which are based on
numbers of atoms, bonds and molecular substructures, as they
are correlated with the selected features.

Secondly, the ADORE dataset contains six molecular repre-
sentations, which were developed to make chemical structures
machine-readable and therefore useable for ML models. The
four ngerprints MACCS, PubChem, Morgan, and ToxPrint, as
well as the molecular descriptor Mordred are examples of non-
learned representations whereasmol2vec is a learnedmolecular
embedding.26 Please refer to Schür et al. (2023)24 for a detailed
description. For including a ngerprint as model features, we
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Feature count for each fingerprint and data splitting combi-
nation. Most features are from the molecular representations, see
column nmol.repr., where we count the number of informative bits for
the four fingerprints, give the dimensionality of the embedding for
mol2vec, and the number of selected features for Mordred. The 37
remaining features are experimental, taxonomic, and chemical prop-
erties (nother). For Mordred, we do not use the four chemical properties
as they are already part of the molecular descriptor

Mol. repr Data split nall nmol. repr. nother

MACCS Totally random 180 143 37
MACCS Occurrence 178 141 37
PubChem Totally random 506 469 37
PubChem Occurrence 508 471 37
Morgan Totally random 422 385 37
Morgan Occurrence 417 380 37
ToxPrint Totally random 211 174 37
ToxPrint Occurrence 209 172 37
mol2vec Totally random 337 300 37
mol2vec Occurrence 337 300 37
Mordred Totally random 577 544 33
Mordred Occurrence 577 544 33
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suggest to remove duplicated and uninformative bits, (i.e.,
those with only little variation, following the modeling pipeline
described in Lovric et al.27). For the “t-F2F” dataset, the number
of informative bits for the four ngerprints are shown in Table
1, determined for a standard deviation threshold of 0.1. The
number of informative features are determined based only on
the training data to avoid data leakage, which explains the
different numbers for the two data splitting schemes. For
mol2vec, we retained all 300 features, standardized based on
the training data. For Mordred, we standardized the continuous
features based on the training data and performed a uniform
transformation of the ordinal features to the range of [0, 1].

The taxonomic features can also be split in two sub-categories.
Firstly, the Add my Pet database28 provides features on ecology,
life-history, and pseudo-data used for dynamic energy budget
(DEB) modeling.29 From ecology, we included the categorical
variables climate zone, ecozone, food, and the binary coded
migratory behavior. For these categorical variables, we used
a many-hot encoding since a sh may fulll more than one level,
e.g., for the fathead minnow, the entry for the food variable,
“D_H”, means that it is both detrivorous (“D”) and herbivorous
(“H”). From life-history, we included life span and ultimate body
length. From pseudo-data, we included energy conductance,
allocation rate to soma and volume-specic somatic maintenance
cost. The continuous variables were standardized based on the
training data.

Secondly, the ADORE dataset includes the phylogenetic
distance between species to account for the genetic relationship
between species that might be exploited to infer toxicity across
species. This is based on the assumption that closely-related
species will have a more similar sensitivity prole than less-
closely related ones.30 The phylogenetic distance cannot be
readily used in a standard model as it is a pairwise distance that
cannot solely be attributed to a data point. We only used it in
conjunction with GP regression.
© 2024 The Author(s). Published by the Royal Society of Chemistry
Mainly, the models are trained on all these features except for
the phylogenetic distances. We also trained the models without
a molecular representation, i.e., using only experimental features,
chemical, and taxonomic properties (abbreviated as ‘none’), and
with only three chemical properties, namely molecular weight,
water solubility, and logP (‘top 3’). Additionally, we trained GP
models with all features including the phylogenetic distances.
2.5 Data splittings

Data splitting, the generation of training and test data subsets,
and of cross-validations folds, can greatly affect model perfor-
mance. Possible causes are the inherent variability of the data
itself and (non-obvious) data leakage. Schür et al. (2023)
discusses different data splitting schemes in detail.24 Here, we
describe the two data splittings considered in this study.

2.5.1 Split totally at random. The simplest train-test-split
can be achieved by random sampling of data points, which
has been the main approach in previous work applying ML to
ecotoxicology and generally suffices for a well-balanced dataset
without repeated experiments.12,13,31 For the ADORE dataset
with repeated experiments, i.e., data points coinciding in
chemical, species, and experimental conditions, this approach
has a high risk of data leakage and the associated over-
estimated model performances, as the same chemical as well
as the same chemical–taxon pair are likely to appear in both the
training and test set. We call this data splitting totally random.

2.5.2 Splits by chemical compound. Stratication by
chemical compound ensures that chemicals are not shared
between training and test set. For the split by occurrence of
chemical compounds, compounds are sorted by the number of
experiments performed on them, i.e., those with most experi-
ments at the top. Then, the rst ve compounds are put into the
training set and the sixth is put into the test set. This is repeated
with the subsequent compounds until all are distributed. The
ve cross-validation folds are lled accordingly, i.e., the most
common compound goes to fold 1, the secondmost common to
fold 2, and so on. However, with this split, it is still likely that
similar chemicals are shared between the training and test set,
and between the cross-validation folds.

In ADORE, training and test splits as well as cross-
validations folds for both splitting schemes are available.
Since the split by occurrence of chemical compounds puts one
sixth, i.e., 17%, of the data points in the test set, the associated
ratio of 83 : 17 was maintained for the totally random split to
have comparable sizes across the data subsets.
3 Methods

In this section, we introduce the regression models applied to
the dataset using the log10-transformed mass and molar LC50
as response values.

All code was written in Python 3 using established ML
libraries. It is available in a public repository§ where the
package versions are specied in the environment.yml le.
§ https://renkulab.io/projects/mltox/mltox-model.

Environ. Sci.: Adv., 2024, 3, 1124–1138 | 1127
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3.1 Models

We compared four established regression techniques that can
be applied to QSAR. Least Absolute Shrinkage and Selection
Operator (LASSO) is a linear regression technique with inherent
feature selection. The tree-based models random forest and
eXtreme Gradient Boosting (XGBoost) are commonly used in
eco-toxicology and can be considered state-of-the-art. Gaussian
process regression is more complex and computation-intensive
but has the advantage to provide uncertainty estimates.
Random forest and LASSO models were developed using scikit-
learn,32 XGBoost models with the XGBoost package,33 and the
GP models were built using the gpow package.34 The LASSO
has the low-est computational cost of the considered models.
The RF models take shorter to run than XGBoost models. The
hyperparameters of each model are summarized in the ESI
Table 2.†

3.1.1 LASSO. The LASSO is a regularized linear regression
model. Regularization introduces a term to the loss function of
ordinary least squares (OLS) regression that favors smaller
regression coefficients. For LASSO, regularization shrinks
coefficients to zero and is therefore performing inherent feature
selection as only features with non-zero coefficients are
retained. In the closely related Ridge regression, coefficients are
shrunk towards zero but do not reach zero. The importance of
the regularization term is determined using the regularization
coefficient, a (alpha), which is the only hyperparameter of
LASSO.

We employed a two-step procedure that has the advantage to
give a smaller set of selected features than directly using the
results from LASSO.35 In the rst step, the LASSO was t on the
training data for a range of the hyperparameter a. For each a, all
features with non-zero coefficients were retained. In the second
step, a Ridge regression model is trained using only the non-
zero coefficients (if there are any), and then evaluated on the
validation data. The a with the best validation error is selected.

3.1.2 Random forest. Random forest is an ensemble
learning method using decision trees that constructs mutually-
independent trees using the response value as target variable.
Each tree is learned on a boot-strap sample of the training data,
a procedure known as boot-strap aggregation (“bagging”).36

Trees are further de-correlated by only considering a subset of
features for each split. For regression, the results of each tree
are averaged to obtain the prediction. Typically, a few hundred
trees are learned with depths in the range of a few dozen to a few
hundreds. We optimized the following hyperparameters:
number of trees (n_estimators), maximum depth of a tree
(max_depth), minimum number of samples required to split an
internal node (min_samples_split), number of bootstrap
samples (max_samples), and number of features when looking
for the best split (max_features).

3.1.3 XGBoost. Gradient boosting is another ensemble
learning technique that, in contrast to the bagging approach of
RFs, develops models sequentially using the error of the
predecessor model as target variable. In the case of regression,
the residuals, i.e., the difference between the true and the pre-
dicted value, are minimized. Gradient boosting has been
1128 | Environ. Sci.: Adv., 2024, 3, 1124–1138
rened in the extreme gradient boosting algorithm,33 which is
more scalable than gradient boosting and the state-of-the-art
implementation of boosted decision trees. Typically, XGBoost
trees are less deep than RF trees, the depth ranging up to
a dozen nodes. We optimized the following hyperparameters:
number of trees (n_estimators), shrinkage of step size (eta),
minimum reduction of loss to split a node (gamma), maximum
depth of a tree (max_depth), minimum weight of a child node
(min_child_weight), and subsample ratio (subsample).

3.1.4 Gaussian process regression. Gaussian processes are
state-of-the-art Bayesian tools for regression,37 classication,38

and dimensionality reduction.39 A GP for linear regression uses
a Gaussian prior over the weights of the regressor. It couples
them with a least square error loss function (Gaussian likeli-
hood), which allows for computing in closed form the best
prediction for each input and its condence interval. By relying
on the kernel trick,37 GP can also solve nonlinear regression
problems in closed form. It is the main feature of GP to provide
accurate predictions, which naturally come with condence
intervals. On the other side, GP come with high computational
complexity (i.e., cubic in the number of samples), which renders
them the slowest model we compare. See Appendix A.1 for
details on the GP implementation.

3.2 Hyperparameter optimization

For each combination of model, molecular representation, data
splitting scheme, and concentration type, we chose the corre-
sponding optimal hyperparameter(s) using gridsearch. For each
hyperparameter setting, 5-fold cross-validation on the training
data was employed and the hyperparameter setting with the
lowest cross-validated root mean square error (RMSE) was
selected. Then, the model with the best cross-validation
performance based on RMSE was retrained on the entire
training set and evaluated on the test set. We report both cross-
validation and test error.

3.3 Metrics

To evaluate the cross-validation and test runs, we calculated
micro-average RMSE, mean absolute error (MAE), and the
coefficient of determination R2 (see Appendix B.1). For the test
runs, we also evaluated macro-averaged metrics (see
Appendix B.2).

In contrast to R2, RMSE and MAE have the same dimension
as the response, the log10-transformed LC50. Accordingly, an
RMSE or MAE of 1 translates to one step on the log10 scale, i.e.,
one order of magnitude on the original, non-transformed, scale.
This direct relation to the response unit allows for an intuitive
interpretation of error values.

3.4 Feature importance

For the tree-based models RF and XGBoost, we investigated two
types of feature importances: permutation based feature
importances, calculated using the scikit-learn function sklear-
n.inspection.permutation_importance, and SHAP (SHapley
Additive exPlanations) values.40 Feature importance methods
can be distinguished by their scope, e.g., do they provide
© 2024 The Author(s). Published by the Royal Society of Chemistry
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feedback on the entire model (global scope), or do they explain
an individual prediction (local scope).41 The permutation
feature importance measures the increase in prediction error
when per-muting the values of features, providing global
information about the model. On the other hand, SHAP values
are a local method as they are calculated for individual
predictions. They can be averaged for a global interpretation of
the model.

3.5 Reporting

Several best practices for ML-based science and QSARs have
been proposed. We evaluated our work against three checklist-
based reporting schemes: (1) the REFORMS checklist for ML-
based science,22 (2) potential pitfalls related to data leakage,15

and (3) a QSAR-specic checklist,18 which has been extended to
the application of ML to QSARs.19 We consider our approach to
go beyond QSAR through the integration of species-specic and
Fig. 2 Distribution of the training and test set from the split by
occurrence of chemical compounds for LC50 (in mol L−1), molecular
weight (in g mol−1), water solubility (in mg L−1), and log P.

Fig. 3 (A) Histogram of the number of data points associated with a com
type, observation duration, concentration type, and exposure type). (B)
values. Y-axis labels indicate the chemical name, CAS number, the spe
number of data points. For fish, all tests were carried out for the effect g

© 2024 The Author(s). Published by the Royal Society of Chemistry
experimental data. Nonetheless, these guidances are still rele-
vant to our work. The detailed self-assessments can be found in
the ESI.†
4 Results and discussion
4.1 Data quality & variability

Data is the basis for every model. Ipso facto, model performance
is limited by the quality of the data it was trained on. Reliable
predictions can only be obtained within the range of data (i.e.,
range of toxicity and range of features) according to the
bounding-box approach, a simple applicability domain tech-
nique. Fig. 2 shows the training and test set distribution of the
response value (LC50 in mol L−1) and three relevant chemical
features: molecular weight, water solubility, and log P. Training
and test set were constructed to cover a similar range of the
response values as well as the chemical properties.

ADORE contains repeated experiments that do not neces-
sarily share the LC50 value. Most experiments have only one or
a few values associated with them (Fig. 3(A)). Nonetheless, the
LC50 values can vary over several orders of magnitude, as is
depicted in Fig. 3(B) for sh tests repeated at least 25 times. In
vivo data, by default, is highly variable, even within strictly
standardized experimental settings such as the OECD TG 203.2
4.2 Modeling results

4.2.1 Validation results. Here, we discuss cross-validation
results. The results on the test set are described in Section 4.2.2.

4.2.1.1 Data splitting scheme. For the totally random split,
we achieve much better performances than for the split by
occurrence, independent of concentration type, model, and
molecular representation (see Fig. 4 and ESI Fig. 1 and 2†). For
models trained using a molecular representation, the RMSE
does not exceed 0.90, MAE does not exceed 0.65, and R2 is above
0.65, for all combinations. For the tree-based models, RF and
XGBoost, the RMSE is around 0.50, MAE around 0.30, and R2 is
reaching 0.90. Despite having been achieved on the same
bination of chemical, species, and experimental conditions (i.e., media
Boxplot of toxicity values for experimental conditions with at least 25
cies it was tested on, the effect group, observation duration, and the
roup mortality (MOR).

Environ. Sci.: Adv., 2024, 3, 1124–1138 | 1129
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Fig. 4 Cross-validated RMSE for both data splittings, concentration types, all models, and molecular representations. Arrow indicates the lower
the better.

Environmental Science: Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

3 
ju

ni
j 2

02
4.

 D
ow

nl
oa

de
d 

on
 3

. 1
1.

 2
02

5 
14

:3
9:

09
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
dataset, these performances are substantially better compared
to the split by occurrence. This shows how data leakage
produces articially inated performances.

Signatures of data leakage can also be seen in the selected
hyperparameters. For LASSO, the regularization parameter a is
consistently smaller for the totally random split (0.00001–
0.00025) than for the occurrence split (0.00631–0.10000) (ESI
Table 3†). A smaller a, relates to more features being added to
the model, which can be interpreted as the model attempting to
memorize the training data. We observe the same behavior for
the tree-based models, but less consistently. For the RF models,
more and deeper trees are selected (ESI Table 4†) for the totally
random split. Also for the XGBoost models, deeper trees are
grown for the totally random split than for the occurrence split
(ESI Table 5†). Deep trees can be related to overtting.

4.2.1.2 Concentration type. The models perform on par for
both the log10-transformed mass and molar LC50 independent
of the data splitting scheme and the molecular representation.

4.2.1.3 Model. The tree-based models perform best for all
combinations of data splitting schemes and concentration type,
followed by GP regression. The linear model, LASSO, performs
worst.

4.2.1.4 Molecular representation. The six representations
perform similarly for all combinations of concentration type,
data split, and model, shown as colored bars in Fig. 4 and ESI
Fig. 1 and 2.† Additional bars indicate performances with only
experimental, chemical and taxonomic properties (‘none’, i.e.
no molecular representation) or using only three chemical
properties (‘top 3’).

For the remainder of the study, we focus on the split by
occurrence of chemical compounds, since it reduces the risk of
1130 | Environ. Sci.: Adv., 2024, 3, 1124–1138
data leakage compared to the totally random split, and on the
molar-based LC50, since it more closely resembles the outcome
of toxicity tests. For the occurrence split, all combinations of
concentration types, models, and molecular representations
achieve an RMSE of around 1, which means that, globally, the
LC50 can be predicted within an order of magnitude (see
bottom row of Fig. 4). For the moment, we do not restrict
ourselves to a molecular representation but rst evaluate the
test performance.

4.2.2 Performance on test set. We evaluated the best
models on the test set for molar LC50 and the split by occur-
rence of chemical compounds. Test and cross-validation (micro-
average) RMSE and R2 are shown in Fig. 5. The test performance
is comparable to the cross-validation performance, e.g., the tree-
based models perform better than GP and LASSO, and for
models trained on a molecular representation, the RMSE varies
around 1.0 and R2 around 0.6.

Also for the test set, the six molecular representations
perform on par for each model. This indicates that these
molecular representations, in combination with the chemical
properties (with the exception of Mordred, since this is
a combination of molecular representation and chemical
properties), are equally valid descriptors of the underlying
chemical space. The molecular representations are necessary
features as models without them perform worse.

The macro-averaged RMSEs only show minor differences
compared to the micro-averaged RMSE. Tree-based models
perform best independent of the average type. According to ESI
Fig. 3,† the best micro-averaged test performance is achieved
with an XGBoost model trained on MACCS ngerprint features
(RMSEm = 0.927). The macro-averages for chemicals and taxa
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Test (depicted as bars) and cross-validated (diamonds) RMSE andR2

for molar LC50, split by occurrence of chemical compounds, all models,
andmolecular representations. Arrows indicate the lower/higher the better.

Fig. 6 Feature importances for the XGBoost model trained with the MAC
top 10 features are shown. The features are listed in the ESI Table 1.† P
permutation-based feature importance, panel (c) the mean absolute S
chemical properties, the prefix is “chem”, for experimental features, “res
fingerprint contain the bit number and the corresponding SMARTS string

© 2024 The Author(s). Published by the Royal Society of Chemistry
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combined and for taxa only are also best for the MACCS
ngerprint (RF, RMSEM = 0.904 and XGBoost, RMSET = 0.938,
respectively). The chemical macro-average is best for RF and
ToxPrint (RMSEC = 0.845) (ESI Fig. 3†).

4.3 Including phylogenetic distances

For GP, the phylogenetic pairwise distances can be used for
modeling by adding a pairwise distance kernel. This does not
improve the predictions, as GP models with and without pair-
wise distances perform similarly, both during cross-validation
(ESI Fig. 4†) and when testing (ESI Fig. 5†).

4.4 Explainability

Machine learning models are widely considered as black box
models, where the prediction process is mostly opaque.
However, there exist several approaches that render models
more explainable and allow to better understand the relevance
of input features.

4.4.1 Residuals. Residuals can aid in identifying correla-
tions between features and local model performance. A residual
is the difference between the predicted and the true value. A
negative residual corresponds to an overprediction of the
toxicity, i.e., the chemical was predicted more toxic than it
CS fingerprint to predict molar LC50. For both methods, the respective
anel (a) shows the residuals in relation to the log(LC50), panel (b) the
HAP values, and panel (d) the distribution of local SHAP values. For
ult” or “test”, for taxonomic properties, “tax”. The bits from the MACCS
.
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actually is, while a positive residual is an underprediction of the
toxicity. Given the goal of chemical hazard assessment, the
latter is the more problematic case.

To get an intuition about the variation of predictive power
across the toxicity range, we analyzed the correlation between
residuals and true LC50 values (Fig. 6(a)). Lower LC50 values
(corresponding to higher toxicity) are correlated with higher
residuals indicating that these values get underpredicted. Also,
higher LC50 values (corresponding to lower toxicity) are corre-
lated with lower residuals indicating that these get overpredicted.
This phenomenon is also known as “regression to the mean”.

The stripes in the plot correspond to repeated experiments
with varying experimental outcomes but the same prediction.
The variability of repeated experiments, visualized in Fig. 3,
Fig. 7 Species sensitivity distributions (SSDs) of the pesticides methyl-pa
compound 3-tert-butyl-20,5-dichloro-40-nitro-2,6-cresotanilide, and po
LC50. The SSDs of the other chemicals tested on at least 15 species are

1132 | Environ. Sci.: Adv., 2024, 3, 1124–1138
cannot be captured by the models as repeated experiments have
exactly the same feature values for chemical, taxonomic, and
experimental properties.

4.4.2 Feature importance. Given the inconsistent predic-
tive capacity of models on a local level (i.e., the difference
between the ground truth and the predicted value), we abstain
from denitive conclusions regarding feature importance.
Nevertheless, including feature importance contributes to the
discussions between regulators, ecotoxicologists, and data
scientists, on the explainability of models and the role of the
currently available feature importance methods.

Here, we show the feature importances for the XGBoostmodel
trained with the MACCS ngerprint to predict molar LC50. The
results for other combinations of models and molecular
rathion, cypermethrin, p,p0-DDT, and deltamethrin, the contraceptive
tassium cyanide. The species are sorted according to their median true
in the ESI.†

© 2024 The Author(s). Published by the Royal Society of Chemistry
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representations are similar and for most combinations, three
chemical properties contribute most according to both feature
importance methods. Molecular weight (chem_mw), water solu-
bility (chem_ws), and logP (chem_rdkit_clogp) have the highest
importance by a large margin compared to the next features
(Fig. 6(b) and (c)). Nevertheless, the other 168 features still
explain more (+1.14) than the three top features together (0.41 +
0.35 + 0.22= 0.98) (Fig. 6(c)). This is conrmed by themodel runs
on the top 3 features only (light gray bars in Fig. 4 and 5), which
perform worse than models with chemical, taxonomic, and
experimental features. The SHAP values by data point (Fig. 6(d))
allow for an interpretation of how higher or lower values of
a property are correlated with higher or lower toxicity predic-
tions. Positive SHAP values correspond to a higher LC50 and,
thus, lower toxicity. As an example, high log P values, which are
corresponding to increased lipophilicity, lead to negative SHAP
values. This trend is inversed for water solubility. These obser-
vations are consistent with the ecotoxicological principle that
compounds with higher lipophilicity will accumulate more in
fatty tissues and, as an effect, elicit higher toxicity. As is intuitive,
a longer observation duration (result_obs_duration_mean) leads
to lower SHAP values and therefore higher toxicity. A higher
molecular weight leads to higher toxicity, which is likely correlated
to larger molecules also being more lipophilic42 (ESI Fig. 12†). For
other features, there is no straightforward interpretation: the
binary coded static exposure (test_exposure_type_S), i.e., 1 for static
exposure and 0 for other exposure types, shows higher SHAP
values for the static exposure (high value on the binary scale).

As an additional aspect, there are only two taxonomic features
among the most important features, the DEB parameter tax_-
ps_amppm for the permutation-based feature importance and the
ultimate body length (tax_lh_licm) for SHAP. This indicates that
the provided species-related features do not enable the models to
adequately capture the sensitivity proles of the chemicals.

4.4.3 Species sensitivity. Species sensitivity distributions
(SSDs) are a common method in ecotoxicology that integrate
toxicity data of several species for one chemical (the suggested
minimum number of species is 15).43 It serves to identify the
percentage of tested species at risk at a certain concentration.
Decades aer the introduction, SSDs are still the subject of
active research.44,45Here, we produced SSDs for compounds that
have been tested on at least 15 different sh species to inves-
tigate how well the model predictions match the species
sensitivity of the original biological data. The sensitivity of
species to a chemical can span several orders of magnitude
while the range covered by the model predictions is far smaller
and does not follow the sigmoidal shape of the ground truth as
can be seen for four pesticides, a contraceptive compound, and
potassium cyanide in Fig. 7. We therefore conclude that species-
specic sensitivities are not adequately distinguished by our
models.
4.5 Reporting: self-evaluation

We are in line with the REFORMS reporting standards22 by
using a published benchmark dataset and by making all code
and data openly available.
© 2024 The Author(s). Published by the Royal Society of Chemistry
We are condent to have considered all points from the data
leakage and reproducibility checklist by Kapoor et al.15 Apparent
shortcomings stem from the dataset itself and are not
straightforward to evaluate, e.g., a potential sampling bias in the
test distribution. We compared the distributions of key features
between training and test sets, but cannot denitively exclude
the possibility of a non-obvious bias. We are transparent about
other potential pitfalls inherent to the dataset, here and in ref.
24, where we present the dataset and its curation.

According to the guidance documents by Cronin et al. and
Beleld et al., the highest uncertainty in our work is related to
the quality of the original biological data, since we did not verify
all data points against the original literature. Likewise,
measured chemical concentrations both in the exposure
medium and internal concentrations of the organisms are not
included in the data. Additionally, acute mortality is an
unspecic endpoint, as it only accounts for the death of
a specimen. Chemicals can cause death through a number of
different mechanisms, which are not distinguished in the
effects records. This leads to high uncertainty on the mecha-
nistic interpretability of this data.

Overall, our work reects awareness of all raised concerns.
We openly communicate the drawback of the skewed dataset,
which does not allow to split the data according to chemical and
species at the same time. We consider it more important to
avoid data leakage related to chemicals than to the species,
since the latter would be counter-intuitive to the ecotoxico-
logical principle of using model/surrogate species.
4.6 Relevance for environmental hazard assessment

Determining toxicity is a routine part of the regulatory
framework to ensure the safety of chemicals on the market. The
integration of in silico methods into this framework is widely
discussed.4,46–49 Reliable computational tools could predict
toxicological outcomes of chemicals to reduce the need for
animal testing. More importantly, they could serve as pre-
selection tools to nd candidate molecules for a use case in
accordance with safety requirements. This would move chem-
ical design and production closer to the safe and sustainable by
design (SSbD) principle, ensuring chemical safety already
during the design phase.50 To be t for this purpose, model
predictions should be consistent and explainable across a broad
chemical and taxonomic space. Here, regulators need to lead
the way by, for example, specifying the expectations on NAMs in
general and in silico methods in particular, such that they can
be included into an updated paradigm for regulatory hazard
assessment.51

The global performance of our models is satisfactory, as the
LC50 could be predicted within one order of magnitude.
However, on a local level, model performance mainly depends
on the chemical properties. Also, the species-specic features
are not sufficiently informative to explain species differences.
The toxicity of many chemicals is either over- or under-
predicted, but not in a consistent manner. If the chemicals
were generally predicted to be more toxic than they are, this
consistently conservative estimate would be in line with the
Environ. Sci.: Adv., 2024, 3, 1124–1138 | 1133
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precautionary principle and could be implemented into a regu-
latory workow as a pre-selection step. However, the develop-
ment of acceptable NAMs for the regulatory framework is an
iterative process requiring concerted stakeholder efforts when
rening model requirements and performances. Accordingly,
scientists and regulators need to be closely connected to ensure
persistent progress towards this shared goal. We strongly
believe in the potential of ML methods to be an asset in this
process. In the following subsection, we point out several routes
that could, from the modeling perspective, lead to further
improvements in both performance and consistency.
4.7 Limitations & future work

Some limitations are related to the underlying data, while
others are of technical or conceptual nature.

The ADORE “t-F2F” dataset contains results from tests per-
formed on over 100 species for almost 2000 chemicals. Since the
regulatory use case is focused on few surrogate species, the use
of such a broad dataset has drawbacks. The OECD TG 203 2 for
sh acute mortality suggests six model species as surrogates,
which renders models trained on single species data, such as
the ADORE challenges “s-F2F-1”, “s-F2F-2”, and “s-F2F-3”,
closer to the regulatory use case than models based on the “t-
F2F” challenge. The chemicals might not be represented
adequately, e.g., there might be a better descriptor than the
currently used molecular representations. Also, the chemicals
are described based on canonical SMILES, which do not capture
isomerism and 3D structures. Additionally, the applicability
domain is only partly dened. Other approaches might help to
better understand the underlying chemical space, providing
information on which additional data could prove useful in
future work. Regarding the experimental data, there is only
information on the use of active ingredients in isolation or
formulations (test_conc1_type), and not on the composition of
these formulations and the percentage of active ingredient
contained in them.

Biologically, by choosing acute mortality, we opted for an
unspecic effect not linked to specic modes of action. By
rening the scope of effects to either groups of chemicals with
specic mechanisms or to effects that are closely coupled to
specic modes of action, better model performances could be
expected. On the other side, given far less training data, this
could also lead to worse model performances or overtting.
Exploring the application to other levels of biological organi-
zation is a worthy goal, despite acute mortality being one of the
most signicant eco-toxicological effects within the current
regulatory framework.52 Feature importance analysis in
conjunction with species sensitivity distributions indicated that
the current taxonomic features are not sufficiently capturing
species-specic differences. Zubrod et al. (2023)7 expanded their
feature space with more species-specic features at the cost of
a smaller species coverage, which is a focus on few, well-covered
(surrogate) species representing a trade-off worth to explore.
Likewise, efforts exist to map the conservation of potential
molecular targets for toxic effects across species using genetic
data. However, given the low specicity of acute mortality, this
1134 | Environ. Sci.: Adv., 2024, 3, 1124–1138
is currently unlikely to be adapted.53 Future work could include
phylogenetic distances as a feature on a supercial level, e.g., by
using the phylogenetic distance to a single reference species
instead of using the complete pairwise distance matrix.

Apart from these data and technology related limitations,
other model types, such as the pairwise recommender systems
deployed by Viljanen et al. (2023),54 could be explored.

On a broader level, this study is based on in vivo data and
aimed to assess the suitability of ML as an alternative to animal
experiments. Meanwhile, other alternative methods have been
established or are under development, for example, tests based
on early life stages (sh embryo acute toxicity test; OECD TG
236 55) and on isolated cell cultures (in vitro, sh cell line acute
toxicity assay; OECD TG 249 56). These NAMs have a high
potential as reliable and reproducible data sources, which can
be used to train models for potentially higher predictive
performance, reducing the reliance on in vivo data. They may
also help in lling data gaps on a local level. The integration of
multiple alternative endpoints through ML into a toolbox-based
framework may benet the regulatory process, compared to
evaluating individual NAMs against the currently accepted
endpoint sh acute mortality. As described earlier, we believe
that this effort needs to be undertaken in close collaboration
between researchers and regulators to cater to the strengths of
the individual methods while ensuring both public and envi-
ronmental safety.
4.8 Comparison with previous studies

Several studies have applied ML regression models to predict
eco-toxicological outcomes in sh. Since results were obtained
from data with different taxonomic (single-species vs. across-
species and across-taxa vs. multiple species) and chemical
scopes, comparison is difficult, both among the previous
studies and to our work. Comparison is additionally hindered
by different train-test- splitting schemes. This substantiates the
necessity of adopting the use of benchmark datasets and best
practices for ML-based research and its dissemination going
forward.

Similar to us, Zubrod et al. (2023) modeled multiple species
simultaneously and included species-specic data from the Add
my Pet database in addition to chemical properties and the
molecular representations ToxPrint and Mordred to predict
log10-transformed mass LC50.7 However, their chemical space
was limited to pesticides. Their freshwater sh dataset, con-
taining 1892 samples from 92 species and 360 pesticides, was
obtained from the Envirotox database,57 which largely overlaps
with ECOTOX. For a species–chemical combination, they aver-
aged all data points. They performed random data splitting,
which corresponds to our totally random split, and splitting
stratied by toxicity values. No stratication by chemical and/or
species was mentioned. They trained RF models using 10-fold
cross-validation with varying feature sets and obtained test
RMSE values of 0.54, which is comparable to our results from
the totally random split. According to mean absolute SHAP
values, water solubility and logP are the most important
predictors in their nal model.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Additional works, oen focusing on the “aquatic triad” of
algae, crustaceans, and sh, which are commonly used as
surrogates for the different trophic levels in ecotoxicology, are
discussed in Appendix C.

5 Conclusions

Our study focused on the implementation and interpretation of
machine learning methods to predict sh acute mortality. We
trained four types of models to predict the lethal concentration
50 (LC50) of 1905 compounds on 140 sh species. We found
that tree-based models, specically RF and XGBoost, performed
best and were able to predict the log10-transformed LC50 with
a root mean square error of 0.90, which corresponds to (slightly
less than) an order of magnitude on the original LC50 scale.
However, on a local level, the models are not yet accurate
enough to consistently predict the toxicity of single chemicals
across the taxonomic space. The models were found to be
mainly inuenced by a few chemical properties and to not
capture taxonomic traits, and thus species-specic sensitivities,
sufficiently.

In conclusion, while ML models show promise in predicting
sh acute mortality, there are still limitations that need to be
addressed. We see this study as a contribution to the ongoing
discussions on howmachine learning can be integrated into the
regulatory process, while further research and improvements
are needed to achieve better explainability and, as a result,
foster acceptance. To progress the eld as a whole beyond
individual studies, transparency, comparability, and reproduc-
ibility need to be considered in the development of models.

6 Models
6.1 Details on the Gaussian process implementation

The Gaussian process learns from the similarity of the data
points that are presented to it through a kernel function. The
kernel function is calculated for each pair of data points leading
to an n × n symmetric matrix, where n is the number of data
points, and each entry corresponds to the similarity of two data
points. We propose an additive kernel that separates the
different groups of variables

k(xi,xj) = w1k1(x
exp
i , xexpj ) + w2k2(x

chem
i , xchemj ) + w3k3(x

mol
i , xmol

j )

+ w4k4(x
tax
i , xtaxj ) + w5k5(x

pdm
i , xpdmj ) + w6dij, (1)

where wi is the relative strength of each kernel and ki(xi, xj) is the
well-known squared exponential (SE) kernel for the experi-
mental features (exp), chemical properties (chem), molecular
representation (mol), and taxonomic properties (tax). For the
taxonomic pairwise distances (pdm), we used a pairwise
distance kernel, which has the pairwise phylogenetic distance
of the two species associated with the respective data points as
each entry.

k
�
x; x

0
�
¼ exp

 
�
Xd
l¼1

gl

�
xl � x

0
l

�2!
(2)
© 2024 The Author(s). Published by the Royal Society of Chemistry
The SE kernel can be used in an unweighted fashion with the
same lengthscale g1 = g2 = . = gd = g for all d features.
Alternatively, a characteristic lengthscale gl per feature is opti-
mized using a procedure called automatic relevance determi-
nation (ARD). The inverse of the characteristic lengthscale
determines the relevance of each feature.37 The SE kernels for
the rst four groups of features were used with ARD and
initialized with wi = 1 and gil = 3.

To substantially reduce computation time, we used a sparse
GP regression algorithm,58 which is implemented in the gpow
package34 in the function gpow.models.SGPR. The compute
time for the 22k training entries could be reduced from more
than a day to a few hours. The sparse approach constructs an
approximation using a small set, typically a few hundred, of
inducing points, which are representative points capturing the
data structure. The number of inducing points is the only
hyperparameter for the GP model. We selected the inducing
points using k-means clustering, where k corresponds to the
number of inducing points. The clustering algorithm, imple-
mented using scikit-learn, returns the cluster centers, and not
actual data points, as input for the sparse GP regression.

See Rasmussen and Williams 37 and the appendix of Gasser
et al.59 for a more detailed description of Gaussian processes.
7 Metrics
7.1 Micro-averaged metrics

For cross-validation and testing, we calculated the micro-
average RMSE, MAE, and R2, of the respective data subsets
containing N samples. We call yi the measured response and ŷi
the predicted response for entry i. ŷ is the average response in
the respective data subset, e.g., the test data if we calculate test
R2. In micro-averaged metrics, each data point has the same
weight. This means, for example, that chemicals appearing
more oen will be over-represented.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðŷi � yiÞ2
vuut (3)

MAE ¼ 1

N

XN
i¼1

jŷi � yij (4)

R2 ¼ 1�
PN
i¼1

ðyi � ŷiÞ2

PN
i¼1

ðyi � yÞ2
(5)

We do not report the squared Pearson coefficient, r2, that is
used in older QSAR studies, as it is not an appropriate metric in
our case. When dealing with nonlinear models, r2 s R2, and
model selection based on the r2 can lead to a wrong interpre-
tation of the results.60,61 In fact, not only the squared Pearson
coefficient treats positive and negative correlations equally, but
also a perfect correlation (r = 1) does not necessarily imply that
yi = ŷi for every i (see Khandelwal62 for a didactic explanation).
Environ. Sci.: Adv., 2024, 3, 1124–1138 | 1135
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7.2 Macro-averaged test metrics

For the test sets, we also calculated macro-averaged test metrics
to account for repeated experiments on chemicals and species.
These give the same weight to chemicals and/or taxa instead of
micro-averaged metrics that give the same weight to individual
data points. A test set containing N samples with repeated
experiments has NC < N chemicals and NT < N taxa. We use c to
indicate a chemical and t to indicate a taxon. A repeated
experiment (i.e., a (c, t) couple) has nct instances. We call nc the
number of times chemical c was tested and nt the number of
times that taxon t was tested.

Micro-averaged root mean square error (mRMSE). This metric
corresponds to eqn (3) and gives each data point the same
weight.

RMSEm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðŷi � yiÞ2
vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XNc

c¼1

XNt

t¼1

Xnct
j¼1

�
ŷct;j � yct;j

�2vuut :

(6)

Macro-averaged root mean square error (MRMSE) This one
gives each chemical and taxon the same weight:

RMSEM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NcNt

XNc

c¼1

XNt

t¼1

"
1

nct

Xnct
j¼1

�
ŷct;j � yct;j

�2#vuut : (7)

Chemical macro-averaged root mean square error (CRMSE).
This one gives each chemical the same weight:

RMSEC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nc

XNc

c¼1

"
1

nc

Xnc
k¼1

�
ŷc;k � yc;k

�2#vuut : (8)

Taxon macro-averaged root mean square error (TRMSE).
This one gives each taxon the same weight:

RMSET ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nt

XNt

t¼1

"
1

nt

Xnt
l¼1

�
ŷt;l � yt;l

�2#vuut : (9)
8 Comparison with previous studies
– continued

Singh et al.14 implemented ensemble learning models for
across-species and across-taxa predictions of log molar effective
concentration 50 (EC50). The models were trained on single-
species algae data (P. subcapitata) using a random train-test-
split and 10-fold cross-validation. Since the dataset does not
contain repeated experiments, random splitting is adequate.
Their decision tree boost and decision tree forest models ach-
ieved test RMSEs of 0.56 and 0.64, respectively. They were then
used to predict on other algae, crustaceans, sh, and bacteria
species,14 achieving RMSEs in the range of 0.43 to 0.71. The
performance on the sh (medaka, O. latipes, 505 data points) is
1136 | Environ. Sci.: Adv., 2024, 3, 1124–1138
in the same range (0.61 and 0.59, respectively) as the test RMSEs
on the algae species. Their better model performance can be
attributed to less diverse datasets, i.e., single-species datasets,
less than 800 chemicals in total, and datasets with 40 to 547
chemicals, of which many are shared between data sets. It is
unclear how limits, e.g., LC50 and EC50 larger than a certain
value, were processed. The models were based on eight chem-
ical features of which XLogP (logP calculated by an atomic
method) and SP-1 (chi simple path descriptor of order 1) were
found to be most important.

Toma et al.12 compiled a dataset on acute and chronic
toxicity data for four sh species, algae (Raphidocelis sub-
capitata), and crustaceans (D. magna) using data from the
Japanese Ministry of Environment and ECOTOX.12 For repeated
experiments, the geometric mean was calculated and the molar
response variables were Box–Cox transformed. Notably, data
points with high variability (±3 SD from the mean of Box–Cox
transformed response values) were excluded. The single-species
data subset on acute sh toxicity amounted to 331 chemicals
tested on O. latipes, for which a RF model, trained aer 80:20
train-test-split stratied by LC50 value using 10-fold cross-
validation, achieved a test RMSE of 0.87. This is not directly
comparable to our work since a different transformation of the
response variable was used.

Song et al.13 used eight single-species datasets, of which ve
were sh species, to train articial neural nets to predict the log
molar concentration.13 The neural nets were trained using 5-
fold cross-validation on a training set. The model performance
was evaluated on a held-out test set of 20 randomly selected
chemicals, leading to R2 values of 0.54 to 0.72 for the sh data
subsets.

Code and data availability

The code is available on https://renkulab.io/gitlab/mltox/mltox-
model. The ADORE dataset is available on ERIC, the
institutional data repository of Eawag (https://doi.org/
10.25678/0008C9) and in the repository https://renkulab.io/
gitlab/mltox/adore. The modeling repository https://
renkulab.io/gitlab/mltox/adore-modeling contains code on
how to load the data, prepare it for modeling, e.g., create one-
hot and multi-hot-encodings for categorical features, apply
the train-test-split for 5-fold cross-validation, and train and
evaluate RF models.
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