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Tetra-n-butylammonium difluorotriphenylsilicate (TBAT) is a conveniently handled anhydrous fluoride
source, commonly used as a surrogate for tetra-n-butylammonium fluoride (TBAF). While prior studies
indicate that TBAT reacts rapidly with fluoride acceptors, little is known about the mechanism(s) of
fluoride transfer. We report on the interrogation of the kinetics of three processes in which fluoride is
transferred from TBAT, in THF and in MeCN, using a variety of NMR methods, including chemical
exchange saturation transfer, magnetisation transfer, diffusion analysis, and 1D NOESY. These studies
reveal ion-pairing between the tetra-n-butylammonium and difluorotriphenylsilicate moieties, and a very
low but detectable degree of fluoride dissociation, which then undergoes further equilibria and/or
induces decomposition, depending on the conditions. Degenerate exchange between TBAT and
fluorotriphenylsilane (FTPS) is very rapid in THF, inherently increases in rate over time, and is profoundly
sensitive to the presence of water. Addition of 2,6-di-tert-butylpyridine and 3 A molecular sieves
stabilises the exchange rate, and both dissociative and direct fluoride transfer are shown to proceed in
parallel under these conditions. Degenerate exchange between TBAT and 2-naphthalenyl fluorosulfate
(ARSF) is not detected at the NMR timescale in THF, and is slow in MeCN. For the latter, the exchange is
near-fully inhibited by exogenous FTPS, indicating a predominantly dissociative character to this

exchange process. Fluorination of benzyl bromide (BzBr) with TBAT in MeCN-dz exhibits moderate
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Accepted 6th December 2023 progressive autoinhibition, and the initial rate of the reaction is supressed by the presence of exogenous

FTPS. Overall, TBAT can act as a genuine surrogate for TBAF, as well as a reservoir for rapidly-reversible
release of traces of it, with the relative contribution of the pathways depending, inter alia, on the identity
of the fluoride acceptor, the solvent, and the concentration of endogenous or exogenous FTPS.
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solution-phase '’F NMR spectra of the reaction mixture. In the
conversion of 1-iodoalkanes to 1-fluoroalkanes, TBAT results in

Introduction

Tetra-n-butylammonium difluorotriphenylsilicate (TBAT, Fig. 1)
was introduced by DeShong* in 1995 as a convenient alternative
to tetra-n-butylammonium fluoride (TBAF), and is widely
employed, inter alia, for C-F generation,'*> deprotection,® ben-
zyne generation,* and anion generation by Si-X cleavage (X =
C,5 N’G 0,7 S;7'1).8’9

Despite its extensive application, very little has been reported
about the kinetics and mechanism by which TBAT transfers
fluoride.”*-*¢ Direct fluoride transfer from TBAT to silicon was
proposed for the anion-initiated 1,4-addition of TMSCCI; to
nitroalkenes (Scheme 1a)."* This conclusion was primarily
based on the lack of signals attributable to free fluoride ions in
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significantly less competing B-elimination than TBAF-3H,O
(Scheme 1b), albeit under markedly different conditions,'**
again leading to the conclusion that the fluoride transferred
from TBAT is much less “naked” than that in TBAF. Makosza
and Bujok found that the tris-p-tolyl analogue of TBAT reacts
with benzyl bromide (BzBr) more than seven-fold faster than
TBAT itself, Scheme 1c.'> However, whether the transfer occurs
directly from the silicate was not established. Finally, a recent
study by Zheng et al. reported a pseudo-first-order rate constant,
kobs = 6.7 x 107> s7', for the nominally direct transfer of

F
BuN® ol «Ph
Ph_sll\
F

®
BuNS O
Ph

TBAT TBAF

Fig. 1 Tetra-n-butylammonium difluorotriphenylsilicate (TBAT) and
tetra-n-butylammonium fluoride (TBAF).
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Scheme 1l (a) Mechanistic proposalin a study on the addition of TMSCCls
reactions of 1-iodoalkanes with TBAT and TBAF-3H,0,* (c) relative rate

to nitroalkenes,*° (b) ratios of B-elimination-to-substitution products in
constants of fluorination of benzyl bromide using "Bu4NArsSiF,, where

Ar = Ph or p-Tol,*? (d) rapid fluoride exchange between TBAT and pheny! fluorosulfate studied via time-dependent saturation transfer NMR
spectroscopy,*® (e) prior mechanistic work on TBAT -initiated reactivity of TMSCFs, where the fluoride transfer from TBAT is very rapid with

respect to NMR spectroscopy. In the presence of excess TMSCFs, the
equilibrium with [TMS(CF3),]~.*

fluoride from TBAT (180 mw) to the sulfur in phenyl fluo-
rosulfate (PhOSO,F, 18 mwm) at 298 K in MeCN-d; (Scheme 1d).
The rate was estimated by time-dependent saturation-transfer
NMR spectroscopy.*®

We have recently studied chain reactions initiated by liber-
ation of a CF;~ anion(oid) from [TMS(CF;)F| . The latter is
generated in situ by very rapid transfer of fluoride from TBAT to
TMSCF;, concomitantly producing fluorotriphenylsilane
(FTPS), Scheme 1e.** Herein we report on a detailed investiga-
tion into the kinetics and mechanism of fluoride transfer from
TBAT. We have studied this under three sets of conditions, two
involving degenerate fluoride exchange (with FTPS and with 2-
naphthalenyl fluorosulfate, ARSF) and one involving fluoride
transfer to benzyl bromide (BzBr). The primary focus of the
work has been the distinction of whether fluoride is transferred
directly between TBAT and the fluoride acceptor, or whether
there are pre-dissociation step(s) to liberate TBAF as the tran-
sient agent for fluoride delivery.

Results and discussion

Prior to our NMR-investigation of the kinetics and mechanism
of fluoride transfer, we analysed the NMR-spectroscopic
features of TBAT, in THF and in MeCN, including its specia-
tion. The latter comprises two aspects: the extent of interaction
between the difluorotriphenylsilicate and tetra-n-butylammo-
nium ions, Ph;SiF,” and "Bu,N*, and the extent of fluoride
dissociation from the anion, Ph;SiF, .

4332 | Chem. Sci., 2024, 15, 4331-4340

CF3~ anion(oid) is transient, undergoing rapidly-reversible exergonic

Solution-phase 'H,'°F NMR-spectroscopic parameters of
TBAT

The 'H and '°F nuclei in TBAT were selected for study based on
their high abundance and receptivity, 1/2-spin character, and
relatively short longitudinal relaxation times. The difluoro-
triphenylsilicate anion is pseudo-trigonal bipyramidal in both
the solid state,’ and in solution,""” with the fluorine atoms
axial and the phenyl groups equatorial. "H NMR (400 MHz)
spectra of TBAT in THF-dg (see Section S2.1 of ESI{) comprise
two sets of signals in the aromatic region (p-, m- and o-protons
in Ph) and three sets of signals in the aliphatic region (C(1),
C(2,3) methylenes and C(4) methyl in "Bu). In MeCN-d; the
three methylene units are all resolved in the aliphatic region,
the aromatic region is similar to that in THF. The '°F NMR (377
MHz) spectra display a singlet corresponding to the two
chemically and magnetically equivalent fluorine atoms in the
Ph;SiF,~ anion, with satellites (/g = (253.8 %+ 0.4) Hz and *Jsc
= (41.4 £ 0.3) Hz) that are consistent with the *°Si and "*C{"H}
NMR data (both in CDCl;) reported by DeShong.” The
concentration dependencies of the chemical shift, 6™*", and
the longitudinal relaxation time constant, 71 >*", of the fluorine
atoms were correlated empirically, eqn (1)-(4). The chemical
shift of TBAT is concentration dependent in THF (varying
between —96.8 and —95.3 ppm, in the range studied, eqn (1)),
whereas it is essentially invariant in MeCN in the concentration
range studied (—95.3 ppm; eqn (3)). This phenomenon may
arise from the much lower dielectric constant of THF, compared
to MeCN, and thus greater impact of changes in the ionic

© 2024 The Author(s). Published by the Royal Society of Chemistry
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strength of the medium as the TBAT concentration in THF is
raised. The longitudinal relaxation of the "H and "°F nuclei in
TBAT takes longer in MeCN than in THF, at all concentrations
studied, see Sections S3.2 and S3.3 of ESL.¥

TBAT TBAT
o =~ 0.49 In u -97.9
ppm mM (1)

(10 — 210 mM TBAT, THF, 300 K)

TTBAT [TBAT]
= - 026In = 426 @)
(10 —210 mM TBAT, THF, 300 K)
TBAT
b < 953
ppm (3)
(15— 230 mM TBAT, MeCN, 300 K)
TTBAT [TBAT]\” [TBAT]
=00 ) —20015 74
s M M )

(15 =230 mM TBAT, MeCN, 300 K)

Ion pairing. The translational diffusion (D) and mutual
proximity (NOESY) of the Ph;SiF,~ and "Bu,N" ions were used to
probe the extent of ion pairing in TBAT, see Section S4.1 of ESIf
for details. The relative translational self-diffusion coefficients,
D™/D" were determined via 'H pulsed field gradient NMR
experiments at three concentrations, in both THF-dg and MeCN-
d;, and at three temperatures, Table 1, entries 1-18. The average
relative translational self-diffusion coefficient, D~/D", is close to
unity in both THF-d; (0.987 + 0.008) and MeCN-dj, (1.02 £ 0.02).
These values indicate either that the ions are strongly paired, or
that the separated ions have coincidental diffusive properties. To
distinguish these possibilities, we determined translational
diffusion coefficients relative to 1,3,5-trimethoxybenzene, TMB,
at low concentration in DMSO-ds, and at high concentration in
THF-dg, Fig. 2a and b. The TMB-normalised coefficients in
DMSO-d, are not only different to each other, but also signifi-
cantly larger than in THF-dg, Table 1, entries 19 and 20. More-
over, the TMB-normalised diffusion coefficient of a reference
"BuyN" ion liberated from ["BusN'][B(3,5-(CF3),-C¢H3),] in THF-
dg is very similar to the D*/D™® value of the TBAT-derived "Bu,N*
ion in DMSO-dg, Table 1, entries 19 and 21.

'H 1D NOESY analysis of 210 mm solutions of TBAT
confirmed extensive close-contacts between the ions, in both
THF-dg and in MeCN-d; (see Section S4.2 of ESIT for details). For
example, perturbation of selected aromatic protons resulted in
extensive inter-ion NOEs at the aliphatic protons, as well as the
expected intra-ion NOEs at the residual aromatic protons. The
combined analysis of ion-diffusion and ion-proximity in TBAT
indicate that Ph;SiF,” and "BuyN" are extensively paired in
THF-dg and in MeCN-d;, even at moderately low concentration,
and predominantly dissociated in dilute solutions in DMSO-d.

Exchange of fluoride with TBAT. To the best of our knowl-
edge, the reversible liberation of TBAF from TBAT has not been
reported, and TBAF is not detected in standard NMR spectra of
solutions of purified TBAT." However, in such solutions we do

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table1l (a) Ratios of translational diffusion coefficients of PhzSiF,™ and
"BugN™, D7/D*, in solutions of TBAT in THF-dg and MeCN-ds (entries
1-18). (b) Translational diffusion coefficients of PhzSiF,~ and "BusN*,
relative to the internal diffusion standard, TMB, in solutions of TBAT in
DMSO-dg and THF-dg (entries 19 and 20). (c) Translational diffusion
coefficient of "BusN*, relative to the internal diffusion standard, TMB,
in a solution of ["BusN*1[B(3,5-(CF3),—CgH3)4] in THF-dg (entry 21)

Entry Solvent [TBAT] (mm) T (K) D /D"
1 THF-dg 220 300 0.994
2 THF-dg 220 310 0.984
3 THF-dg 220 320 0.981
4 THF-dg 110 300 0.980
5 THF-dg 110 310 0.973
6 THF-dy 110 320 1.01
7 THF-dg 30 300 0.981
8 THF-dg 30 310 0.980
9 THF-dg 30 320 1.00
10 MeCN-d; 220 300 1.04
11 MeCN-d; 220 320 0.986
12 MeCN-d; 220 335 0.971
13 MeCN-d; 120 300 1.04
14 MeCN-d; 120 320 1.01
15 MeCN-d; 120 335 0.994
16 MeCN-d; 40 300 1.03
17 MeCN-d; 40 320 1.05
18 MeCN-d; 40 335 1.01
19 DMSO-dg 1.5 300 1.21
D~/D™® = 0.710
D'/D™® = 0.586
20 THF-dg 207 300 1.00
D /D™® = 0.467
D'/D™® = 0.466
21 THF-dg 201¢ 300 0.931
D™/D™® = 0.536
D'/D™® = 0.576
? ["BuyN"|[B(3,5-(CF3),-CeHs)a]-
(a) DMSO-d¢ A —exp (b) THF-ds
1.0 12

0.0
0.0 1.7 3.4
g (G'mm-1) g (G'mm-1)
Fig.2 Diffusion profiles of PhzSiF,™ ("—"), "BusN™ ("+") and the internal

diffusion standard (“TMB") in: (a) 1.5 mm TBAT and 263 mm TMB in
DMSO-dg, and (b) 207 mm TBAT and 252 mm TMB in THF-dg; both at
300 K.

detect exchange processes between TBAT and a range of species,
including TBAF vide infra, using '°F chemical exchange satu-
ration transfer (*°’F-CEST) NMR spectroscopy (see Sections S4.3
and S7.1.1 in the ESIf). In one '°F-CEST regime, the chemical
shift corresponding to a low-concentration undetected spin is
selectively pre-saturated to probe for its chemical exchange with
a detectable spin present at higher concentration. If the

Chem. Sci., 2024, 15, 4331-4340 | 4333
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exchange occurs at a rate that is sufficiently large relative to the
concentration and longitudinal relaxation time, 7j, of the
higher concentration spin, then there is a detectable attenua-
tion in its intensity in the subsequent pulse-acquire 1D NMR
spectrum.

The experiments were conducted using concentrated solu-
tions'® of TBAT that were prepared and sealed, in J Young valve
NMR tubes, in the glove-box. "F-CEST to TBAT was detected
when pre-saturating at —170 ppm (FTPS) and at —149/147 ppm
in THF/MeCN. The latter species was assigned as tetra-n-buty-
lammonium bifluoride, TBABF (6"®*®*F = —147 ppm, THF and
MeCN-d;).***° The '°F-CEST was greater in MeCN than in THF.
When the solutions were stored over 3 A molecular sieves for 2
months, “’F-CEST was supressed to below the detection limit in
THF. In MeCN the "F-CEST profile showed exchange with
species at —77 ppm, —115 ppm, —128 ppm, —147 ppm (TBABF)
and —169 ppm (FTPS). The species at —77 ppm is tentatively
assigned as partially-hydrous TBAF (6"™®*" = —72 ppm, MeCN-
d;).* The additional signals (at —115 ppm and —128 ppm)
possibly arise from co-products of Hofmann elimination, e.g.
"BuzN(HF),. Lastly, solutions of TBAT containing exogenous
FTPS (~5 mol%)** were studied. The "°F-CEST profiles exhibited
saturation over a broader frequency range, indicative of rapid
exchange between TBAT and FTPS. All other "’F-CEST effects
were supressed to below the detection limit, indicative that
exogenous FTPS drives dissociated fluoride equilibria towards
TBAT.

Analytical model for the kinetics of TBAT exchange with
FTPS. To gain quantitative insight into the exchange processes
detected by '°F-CEST, we conducted magnetisation transfer
NMR-spectroscopic analysis of TBAT solutions, using FTPS as
the fluoride acceptor® (see Section S7.1.2 of ESIT for further
discussion). The two limiting pathways for fluoride transfer are

(a) dissociative transfer (process 1)

® F
BuN__ ol Ph ky Ph_ _Ph
h—=Si - Si=Ph
| pPh k-q fe
tBAT T "Bu,NF FTPS
TBAF
(b) direct transfer (process 2)
F
"BuN ol wPh
Ph—Si. Ph_ Ph
~ ~ai
| YPh Si=Ph FTPS
F*
TBAT ks F
+ Pra— +
L)
h_ Ph ® F*
FTPS = Si=Ph BuN_ o] Ph
||=* Ph—Si_
| YPh
tBAT F

Scheme 2 Two limiting pathways of fluoride transfer from TBAT to
FTPS. (a) Dissociative transfer via TBAF, where K; = ki/k_1 < 1. (b)
Direct bimolecular transfer (the rate constants in each direction, k, are
identical, as AG® = 0). In each transfer pathway, examples of
exchanging fluorine atoms are marked in bold with an asterisk.
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outlined in Schemes 2a and 2b. In the dissociative transfer
pathway (process 1), endogenous TBAF is the reactive interme-
diate. The net rate coefficients are k, for dissociation of TBAT
into FTPS + TBAF, and k_, for their recombination to generate
TBAT; thus K; = ki/k_; < 1. In the direct fluoride transfer
pathway (process 2), TBAT undergoes a bimolecular elementary
reaction with FTPS. The net rate coefficient for this process is k,,
in both directions (AG° = 0).**

The kinetic models below are derived using a discrete spin
formalism,** in which the spin-half nuclei (*°F) within a large
ensemble are opposed (*°F") or aligned (*°F*) to the +z-axis. In
this formalism a species ‘S’ with n equivalent '°F nuclei has (n +
1) magnetic states: thus, FTPS and TBAF both have two states,
while TBAT has three. The populations (N) of *°FY and *°F* in
each species (Ny and N,) dictate its fractional magnetisation,
m®, eqn (5), and this is readily correlated with the integral of the
measured NMR signal (M,*, eqn (6)).

NS
mS = NfTANg (5)
M5 = M. .52m® — 1) (6)

At equilibrium, the fractional magnetisation is unity (meqs =
1) and when fully inverted, it is zero (m® = 0). Rate laws that
describe the change in fractional magnetisation (dm/dz) can be
derived using the spin formalism, with a steady-state approxi-
mation applied to the magnetisation of TBAF. The rate laws for
m™AT and m"™" can then be solved analytically to give their
temporal magnetisation when undergoing dissociative and/or
direct transfer (and longitudinal relaxation), eqn (7) and (8),
see Section S5.2.1 of ESIT for full derivation.

mTBAT _ cle(ﬁ+7)r + cze(ﬁfﬂm +1 (7)
mFTPS _ c3e(ﬁ+v)r + 046(/377)1 +1 (8)

where:

1
alr+1)+ TTPAT + TFTPS

g=- 5 )
( + ! r ! )2 + 4ra?
o —ro. — o=
Til'BAT TlFTPS
v = 3 (10)
‘e ki + kzz[FTPS} (11)
MTBAT  2ITBAT
r o 2 ] (12)

= T3/FTPS
M:‘Cq

[FTPS]

The coefficients for these equations are defined below, in
which m¢®7" and m§™* are fractional magnetisations of the
spins at T = 0, the starting point of the relaxation occurring

under the spin-formalism.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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1
T =) + (8= 1+ e ) (1= )

¢ = 2y (13)
1
a(m(l;TPS _ mgBAT) + (6 + ¥ + m) (l _ },ngBAT>
o=- 7 ! (14)
1
Va(mgBAT _ ’,n(I):TPS) + (ﬁ —y + W) (1 _ mgTPS)
3 = 27 L (15)
1
ra(mgBAT _ m(l):TPS) + (6 + ¥ + W) (1 _ m(l):TPS)
== 1 (16)

2y

Magnetisation transfer in THF and condition-sensitivity. At
300 K in THF the '°F longitudinal relaxation of FTPS, T} '> =
12.0 s, is concentration independent and significantly longer
than that of TBAT. When the two species were mixed ([TBAT] =
52.5 mm, [FTPS] = 83.9 mw), both '°F spins relaxed with equal
rates (T$P® = (2.45 + 0.02) s), after non-selective inversion. This
value is very close to the weighted combination, 75 = 2.54 s, of
the separated spins (see eqn (S5.51) in Section S5.2.1 of ESIY)
and indicative of rapid exchange of '°F at the longitudinal
relaxation timescale.”® This allows use of a simplified kinetic
model, eqn (17), to analyse the temporal fractional magnet-
isation of TBAT after selective inversion of FTPS, and thus
extract a(r + 1).

TBAT L —my™s ealrtT _ e_# 11

" r+1

(17)

The magnitude of «(r + 1) depends on the rate coefficients of
exchange, k; and k,, and the TBAT and FTPS concentrations.
However, the experimental values are sensitive to the conditions
of sample preparation,® and found to inherently increase with
time.”” Conducting the reaction inside a dry Teflon insert
located within a sealed NMR tube substantially exacerbated the
problem, Fig. 3a. A range of tests were conducted to find addi-
tives which would afford temporal stability by sequestration of
the unidentified acids/ions that were accelerating fluoride
exchange between TBAT and FTPS. This eventually led to the
use of a combination of 2,6-di-tert-butylpyridine (DTBP), as
a hindered base, with 3 A molecular sieves (3 A-MS), as a passive
dehydrating agent. DTBP and 3 A-MS were not effective in
isolation, see Section S5.2.4 of ESIT for further discussion. This
allowed us to systematically explore the kinetics of the fluoride
transfer from TBAT to FTPS under stabilised, anhydrous and
non-acidic conditions,?® in THF.

Exchange pathways in the temporally-stabilised system.
Solutions comprising TBAT (101 mwm), FTPS (22.6, 62.9, 101, 144,
and 204 mwm), DTBP (20 mm) and 1-fluoronaphthalene (internal
standard) in THF were sealed in NMR tubes preloaded with 3 A-
MS beads. The exchange rates were then measured periodically

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Magnetisation transfer between TBAT and FTPS in THF (at 300
K). (@) An inherent increase of the magnetisation transfer rate with time
in reactions conducted inside a dry and sealed glass NMR tube, and
inside a dry Teflon insert (located within the NMR tube). (b) Under
anhydrous, stabilised, non-acidic conditions, TBAT transfers fluoride to
FTPS via parallel direct and dissociative mechanisms, with
KsCrrps/ka = 42. ag/s™t = 0.0273[FTPS/mM] + 0.656, R* = 0.989. (c)
Exchange between the species is catalysed by water, with the order in
water estimated as approximately 2. aops(r + 1)/s™t = 577[H,O/mM]34
+17.2, R* = 0.989.

by magnetisation transfer over a period of two weeks. The
kinetic model, eqn (17), gave excellent fits to all 50 experimental
datasets (the average RMSE/M; oy = 1%). The resulting plots of
Qobs against ¢ were fitted to an empirical exponential decay, eqn
(18), to allow evaluation of the underlying temporally-stabilised
exchange rate, «g, see Table S5.10 in Section S5.2.5 of ESIf for
fitted parameters and estimated errors.

(18)

Evaluation of «g as a linear function of [FTPS], eqn (11),
allows the rate coefficients for the two pathways to be deter-
mined as k; = 1.3 s " and k, = 55 M ' s, Fig. 3b. Thus, under
anhydrous, stabilised, non-acidic conditions in THF, TBAT
transfers fluoride to FTPS via parallel direct and dissociative
mechanisms, with kycppg/ki = 42. Analysis of the non-
stabilised anhydrous system indicated that the dissociative
pathway is again a significant contributor to fluoride transfer
from TBAT at low acceptor concentrations, see Sections S5.2.6
and S7.2.3 of ESIt for experimental details and mathematical
considerations. The rate of '°F transfer from TBAT to FTPS in
THF is markedly accelerated by exogenous water which may
assist fluoride dissociation from TBAT via H-bonding or auto-
ionisation.* Analysis of aps(r + 1) against [H,O], Fig. 3c, indi-
cates that this predominantly involves interaction with a water
dimer, or sequential reaction with two water molecules (see
Section S5.2.4 of ESIY).

The exchange between non-stabilised TBAT and FTPS at 300
K in MeCN was found to be significantly more rapid than in
THF. Indeed, the initial fractional magnetisation of TBAT
(mg®*") was less than unity due to non-negligible exchange
with FTPS during the 1.3 ms selective inversion pulse. In
freshly prepared samples, a statistical distribution of *°F spins
was achieved within 5 ms, and the exchange rate again
increased with time. Use of DTBP + 3 A-MS afforded a four-fold
decrease in the initial magnetisation transfer rate in freshly
prepared samples, accompanied by reduced line broadening,

K,
Qobs = (0[0 - as)e f+ Qg

Chem. Sci., 2024, 15, 4331-4340 | 4335


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc05776c

Open Access Article. Published on 07 december 2023. Downloaded on 19. 02. 2026 14:52:13.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Chemical Science

e.g., the ?°Si satellites could be detected (see Fig $5.22¢ and
S5.24a in Section S5.2.7 of ESIt for the appearance of the
signals in the absence and in the presence of DTBP + 3 A-MS,
respectively). However, the stabilisation was short-lived and
unsuitable for detailed kinetic interrogation. We thus switched
to the use of less-reactive fluoride acceptors to facilitate study
of the kinetics of transfer from TBAT in MeCN, vide infra.

Aryl fluorosulfate *°F-exchange with TBAT in MeCN and
inhibition by exogenous FTPS

Zheng et al. reported on exchange between aryl fluorosulfates
and several fluoride sources, including TBAT in MeCN." They
proposed that the ‘SUFEX’ process proceeds via an endergonic
equilibrium association of fluoride at sulfur. To test for disso-
ciative versus direct transfer pathways (processes 3 and 4,
respectively; Fig. 4a), we selected 2-naphthalenyl fluorosulfate
(ARSF) and derived a kinetic model for its magnetisation after
selective inversion of TBAT, eqn (19); see Section S5.3.1 of ESIT
for the derivation.

_ ,TBAT
ARSF ra(l —mg

2y

m ) [e(ﬁ—v)r _ e(B+7)f] 41

(19)

after addition
of FTPS
(stabilised)

15 30
T(s) T(s)
(d) (e)
ARSF
exogenous FTPS (undetectable)
FTPS
[

T T T
-165 -170 -175
S (ppm)

T T T
-95.8 -96.2

5 (ppm)

T T T T T T
38.037.837.637.4 -95.4
S (ppm)

Fig. 4 (a) An approximation for concerted fluoride transfer between
TBAT and ARSF in MeCN (at 300 K; exchanging fluorine atoms are
marked with an asterisk for clarity). (b) Magnetisation transfer between
the spins in MeCN; first measurement, prior to stabilisation, not shown.
Solid line show fitted model. (c) Exchange inhibited by addition of
a small amount of exogenous FTPS to the solution; dashed line shows
fitted model from (b) for reference. (d) The *°F NMR signal of ARSF
does not exhibit line broadening upon addition of exogenous FTPS,
unlike that of TBAT. (e) The FTPS signal is too broad to detect.
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1 1
a(r+1) + TTBAT + TARSF

1 1

B = (20)
2
1 2

Y= 3 (21)

B Kiks ky

M TBAT

b Mo 2[TBAT] (23)

~ MARSF [ARSF]

Exchange was detected at 300 K and four magnetisation
transfer measurements were performed on the same sample
over a period of 3 hours immediately after its preparation (188
mum TBAT; 52 mm ARSF, MeCN; Section S5.3.3 of ESIT), Fig. 4b.
The rate of exchange initially decreased then became stable and
the kinetic model, eqn (19), correlated well with the experi-
mental datasets, affording an average (stabilised) exchange rate
constant ag = 1.4 x 10 3 g%

In the above experiment the endogenous FTPS is at very low
concentration (K; < 1). However, as evident from eqn (22),
while FTPS does not affect the direct transfer pathway (k4;
TBAT), « is a decreasing function of [FTPS] for the dissociative
pathway (k3;; TBAF). Magnetisation transfer measurements were
thus repeated on the sample after addition of FTPS, ~4 mwm. The
rate of F-transfer between TBAT and ARSF was inhibited to
below the qualitative detection limit, Fig. 4c; individual m**5F
profiles before and after FTPS addition are presented in
Fig. S5.28 in Section S5.3.3 of ESL Fitting the data to eqn (19)
gave an average value of ag = 8.1 x 107> s~ " across all four runs,
L.e., 94% inhibition of the rate of fluoride transfer. Furthermore,
comparison of the *°F NMR spectra before and after addition of
FTPS (Fig. 4d) showed that while the ARSF signal was unaf-
fected, the TBAT signal exhibited very significant line broad-
ening, and the FTPS signal itself was broadened to an extent
which rendered it undetectable, Fig. 4e. These features indicate
that fluoride exchange between TBAT and aryl fluorosulfates is
predominantly via the dissociative pathway, with an estimated
standard state partitioning k4(c°TBAT)O'5 /(K1) k; <6.1 x 1072
for 2-naphthalenyl fluorosulfate (ARSF).

TBAT-mediated aryl fluorosulfate decomposition. Rapid
defluorosulfation of phenyl fluorosulfate by nominally anhy-
drous TBAF was reported by Zheng et al.* We detected analo-
gous decomposition of ARSF by TBAT in MeCN at 335 K, as
indicated by the growth of two low intensity signals identified as
[FSO,0 |["BuyN'] and SO,F,.** The third by-product of the
decomposition is nominally FTPS, but this is not observed in
the spectra, even on cooling to 233 K, possibly due to the rapid
exchange line-broadening.** However, a series of magnetisation
transfer measurements (see Section S5.3.4 of ESIf for details)
showed a progressive decrease in the rate of 'F exchange
between TBAT and ARSF, arising from the impact of the growing

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Temporal evolution of the rate of magnetisation transfer
between TBAT and ARSF in MeCN (at 335 K). (a) Exchange between the
spins is progressively inhibited due to accumulating FTPS, formed from
decomposing TBAT, indicating at least partially dissociative character
to the exchange. (b) Fitting of the model of egn (24) showed that
fluoride is transferred to ARSF via both dissociative and direct transfer
pathways, with kz/ks = 43. aops[ARSFI"Y/M ™t s = 1 x 1073 ([TBATIo-
[TBAT) ™' /M~* + 0.53; R? = 0.974.

FTPS concentration on the dissociative pathway, eqn (24) and
Fig. 5a.
Kik; k4

Qobs
[ARSF] ~ 2([TBAT], — [TBAT)) T (24)

The experimental data corresponding to «,ps, [ARSF], and
[TBAT] was fitted against eqn (24) and Fig. 5b, to estimate k3/k,
= 43, and thus that TBAF is a significantly more potent direct
fluoride donor than TBAT.

FTPS inhibition of the reaction of benzyl bromide with TBAT

As reported by Makosza and Bujok, TBAT reacts with benzyl
bromide (BzBr) at elevated temperatures in MeCN, Fig. 6a.

(a) (b)
TBAT 130

@ABr MeCN-dj, 335 K ©/\F
via: =

£
TBAF (process 5, kg) +"Bu,NBr 2110

o[BzBi]

% o[BzBr],
—[BzF]

TBAT (process 6, kg) + FTPS -
(c) 90
12, 0 25 50
103t (s
11 4 (®)
— P °
10 e ®
< - 8.9
= Py ®
a9 o /
a ooe”” 8.4 o
8 |d /
7.9
7 — ] 0 7 14
0 10 20 30 40 50
1073t (s)

Fig. 6 (a) Fluorination of benzyl bromide with TBAT in MeCN-d5 (at
335 K). (b) The reaction was followed by *H and *°F NMR spectroscopy,
and the decay of BzBr mirrored the growth of BzF. (c) The reaction
exhibits progressive inhibition, see dashed line, due to accumulating
FTPS. Inset shows linear second-order correlation over initial 30%
conversion: 1/[BzBr]/M~ = 9 x 107° t/s + 1/[BzBrlo/M~%; R? = 0.985.
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However, unlike the degenerate exchange processes explored
thus far, vide supra, the process stoichiometrically co-generates
FTPS. Thus, fluoride transfer to BzBr that proceeds via a disso-
ciative pathway (process 5) will undergo progressive inhibition
by FTPS. Conversely, if the fluoride transfer proceeds predom-
inantly, or exclusively, via direct transfer from the difluoro-
triphenylsilicate anion (process 6), then there should be no
significant inhibition by accumulating, or exogenous, FTPS.
The reaction of [TBAT], = 129 mwm with [BzBr], = 131 mm was
readily analysed in situ by "H/*°F NMR spectroscopy at 335 K in
MeCN-d;, under N,; with the decay in BzBr mirroring the
growth of BzF, Fig. 6b; see Section S6.1 of ESIT for details.

Standard graphical analysis, Fig. 6c, afforded an initial
pseudo second-order rate coefficient of 9 x 107> M ~' s, The
curvature in the reciprocal plot is consistent with progressive
inhibition of the reaction. Graphical analysis of an identical
reaction conducted in the presence of one equivalent of exog-
enous FTPS (140 mw), afforded a pseudo second-order rate
coefficient of 4 x 107> M~ s7', and without any evident
progressive inhibition (see Section S6.2 of ESIt). These results
indicate that the reaction of TBAT with BzBr at 335 K in MeCN
initially proceeds with significant flux via both the dissociative
and direct transfer pathways.

Conclusions

The speciation of tetra-n-butylammonium  difluoro-
triphenylsilicate ([Ph;SiF, ]"Bu,N'], TBAT) and the mecha-
nism of its reaction with three fluoride acceptors has been
studied in detail by a range of "H/'’F NMR-spectroscopic and
kinetic methods. A combination of 'H 1D NOESY and 'H
diffusion analysis showed the Ph;SiF,” and "Bu,N" ions to be
strongly paired in THF-dg, and in MeCN-d3, but separated in
DMSO-ds. A series of '°F CEST NMR experiments identified that
the ion-pairs undergo endergonic interconversion with fluoro-
triphenylsilane (FTPS) and tetra-n-butylammonium fluoride
(TBAF), both of which are below the detection limit in standard
19F pulse-acquire NMR spectra. TBAF undergoes further equi-
libria and decomposition leading, inter alia, to the formation of
tetra-n-butylammonium bifluoride (TBABF).

The kinetics of degenerate fluoride transfer from TBAT to
FTPS, and to 2-naphthalenyl fluorosulfate (ARSF), were then
studied by '°F magnetisation transfer. The rate of exchange
between TBAT and FTPS in THF is much more rapid than the
longitudinal relaxation timescale of the spins, increases with
time, and is profoundly accelerated by traces of water. Addition
of a combination of 2,6-di-tert-butylpyridine (DTBP) and 3 A
molecular sieves (3 A-MS) to the samples prepared in gas-tight
sealed NMR tubes under N, afforded a stabilised, anhydrous,
non-acidic medium suitable for detailed and systematic kinetic
analysis. The exchange rates were analysed by magnetisation
transfer at various concentrations of FTPS, and the kinetics
characterised using a model that includes direct (k,) transfer
from [Ph;SiF, "] and indirect transfer (k;) via TBAF. The stan-
dard state partitioning was estimated to be k,cpps/k1 = 42, and
thus at 1 m FTPS the transfer is near-exclusively direct (>97%),
while at 1 mm FTPS it is near-exclusively dissociative (>95%).
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The analogous system in MeCN undergoes very rapid fluoride
exchange, approaching the limit of practicality of the
measurement method, and is only transiently stabilised by 2,6-
di-tert-butylpyridine and 3 A molecular sieves.

Exchange of fluoride between TBAT and ARSF was analysed
by magnetisation transfer in MeCN at 300 K, again using
a model that includes direct (k,) transfer from [Ph;SiF, ] and
indirect transfer (k;) via TBAF. The exchange rate is very much
slower than between TBAT and FTPS, and approaches the
longitudinal relaxation timescale of the spins. Moreover, the
addition of FTPS (4 mm) results in the rate of transfer between
TBAT and ARSF being attenuated to the limits of detection. The
standard state partitioning was estimated to be
k4(c°TBAT)0'5/(K1)O'5k3 <6.1 x 1072, and thus the direct exchange
pathway would only become favoured over the dissociative
pathway at unachievable TBAT concentrations (>67 M). On
heating to 335 K the system undergoes slow decomposition,
resulting in co-generation of FTPS, [FSO,O ]["Bu,N'] and
SO,F,, and gradual inhibition of the rate of fluoride exchange
between TBAT and ARSF. The reaction of benzyl bromide (BzBr)
with TBAT in MeCN-d; at 335 K proceeds with non-degenerate
fluoride transfer and is progressively and exogenously inhibi-
ted by FTPS, again due to competing dissociative and direct
transfer mechanisms. The initial standard state partitioning in
this case is estimated to be kﬁ(cfrBAT)O's/(Kl)o'sks = 1.

Overall, the investigation shows that both dissociative and
direct pathways contribute to fluoride transfer from TBAT to
fluoride acceptors in THF, and in MeCN. The rate of transfer,
and the pathway partitioning, are strongly dependent on the
solvent, the presence of water, the affinity of the substrate to
fluoride, and the concentrations of TBAT, the substrate and
FTPS. The most common application of TBAT is for stoichio-
metric non-degenerate fluoride transfer. Under these condi-
tions, the reaction efficiency (rate) and selectivity (e.g., addition
versus elimination) will be dependent on the pathways and their
partitioning. The situation can be generalised for a substrate,
‘S’, undergoing stoichiometric reaction with TBAT via direct (kq)
or dissociative (ki) pathways, to generate product, ‘P, plus FTPS,
Scheme 3 (see Section S7.2.4 of ESIY). Since K; is small, soon
after the start of reaction the rate and pathway fractionations (fy
and fr) can be approximated by eqn (25) and (26), respectively.

exog

dg]’;]t ~ ({FTPSI]GkF+ 7 + kd) ([TBAT], — [P],) ([S], — [P],)
(25)
1
Klk]:
ka([FTPS],y,, + [P,
1
ka([FTPS],y,, + [P],)
K|kF

and

fa=

1+

Je= (26)

1+

For systems where the direct pathway is desired (fqg > f),
then high substrate concentrations, together with the use of
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Scheme 3 Generic processes involving a substrate 'S" undergoing
stoichiometric reaction with TBAT to generate product 'P" via direct
(kq) and dissociative (k) pathways.

exogenous FTPS, will be beneficial. Conversely, where the
dissociative pathway is desired (fy > f3), then low concentra-
tions of both substrate and TBAT will be beneficial, albeit at the
cost of significantly attenuated rate.
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