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High performance photodetectors based on In,S3,
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In,S; 5Se4 5 and In,Sez nanostructuresy

Cite this: Mater. Adv., 2024,

5, 4178

Ankurkumar J. Khimani, & *2 Sujit A. Kadam, 2 *° Ranjan Kr. Giri, (¢

Chetan K. Zankat® and Yuan-Ron Ma(2°

One-dimensional (1D) nanostructures, including nanofibers, nanocubes, and nanoplates of In,Ss,
In,S;sSe;1 s, and InySes semiconductors, were synthesized using a hydrothermal technique for studying
their photodetector behaviour. Photocurrent measurements demonstrate that semiconducting In,Sez 1D
nanofibers display an exceptional response to white light, with a photo responsivity of 185.8 mA W~!
and a detectivity of 22.6 x 10° Jones, which is four times greater than that of In Sz and InyS;5Se; 5
nanostructures. The response times of the In,Sez photodetectors are impressively short, measuring only
8.8 seconds. The superior responsivity detectivity and faster response time of the 1D In,Sez nanofibers
can be attributed to their large surface area, which boosts light absorption and facilitates efficient charge
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1. Introduction

Layered transition metal dichalcogenides (TMDCs), graphene
and black phosphorus have attracted research due to their new
and different physical properties, exceptional structure and
promising applications."™® In the field of photovoltaic develop-
ment, the substitute of lethal materials with eco-friendly mate-
rials is a crucial requirement. In thin film solar cell production,
using CdS as a buffer layer led to the highest efficiency of
21.7%.>'° Nevertheless, in large-scale manufacturing, cad-
mium sulfide causes ecological damage owing to significant
toxicity. Ergo, in these times it is essential to replace CdS
with eco-friendly materials. As an alternative to potentially
hazardous materials (CdS, PbS, CdTe, etc.), compound semi-
conductors like In,S;, In,Se;, ZnO, ZnSe, SnS, SnS,, etc. are
abundant."*™ Among all compounds, In,S; and In,Se; could
be the best choice for optoelectronic device fabrication owing to
their photoconductive character, non-toxicity, elevated optical
transmittance in the visible range (70-80%), wider band gap
(2.1 to 2.7 eV) and low production cost.’®'” Indium selenide
(InySe;) and indium sulphide (In,S;) are n-type semiconductors
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transfer, thereby enhancing the overall device performance.

from the III-VIA group and have recently gained popularity due to
their exceptional charge transport properties, superior mechanical
flexibility, and strong light-matter interactions."®*' In,S; and
In,Se; have frequently shown different valence-varying structures
with different crystalline phases, such as o-In,Ses,>* B-In,Ses,>
v-In,Se;, > 1-In,Se;, 0-In,S;, B-In,S;, and y-In,S;.2° The materials
In,S; and In,Se; are currently under discussion as potential
possibilities for a wide range of applications including photo-
detectors,”” solar cells,>® photoelectrocatalytic water splitting,* gas
sensors,*® electromechanical devices and piezotronic sensors,*
electronic skin strain sensors,*® electroresistance switching in
ferroresistive memory junctions,*® etc. Furthermore, the extraor-
dinary properties of In,S; and In,Se; make them more advanta-
geous in various applications than metal oxides such as CuO,
ZnO, and Fe,0;.>

Indium sulphide occurs in three different crystal forms in
nature. The yellow o-In,S; having a cubic structure is stable at
temperatures above 422 °C. The spinel structure material
B-In,S; (red) is stable at room temperature. The layer structure
of y-In,S; is unaffected by temperatures exceeding 775 °C.
Among these three, o-In,S; is given the most consideration
since it crystallises in a spinel shape and is stable at room
temperature despite its high vacancy density.*>>°

Indium selenide exists in six crystallographic forms in
nature, ie. the hexagonal and rhombohedral structure of
a-In,Se;, hexagonal and rhombohedral structure of B-In,Ses,
hexagonal structure of y-In,Se; and triclinic structure of
4-In,Se;. Temperature-dependent phase transitions for bulk
In,Se; consist of the a-In,Se; to B-In,Se; phase transition at
200 °C, the B-In,Se; to y-In,Se; phase transition at 520 °C, and
the y-In,Se; to 8-In,Se; transition at 730 °C.*”*® Individual
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sheets or layers of o and 3 phases have five sporadic sub-layers
of indium and selenium atoms. van der Waals interaction
allows bordering layers to combine. Vacancies are arranged in
a screw pattern on every third In site, making the y-phase a
defective wurtzite structure. Different configurations of the
vacancy screws allow it to crystallise in one of many different
space groups, including P6,, P65, P6,22, or P6522.%%*°

There are plenty of forms of Indium sulfide and Indium
selenide available, such as self-assembled porous 3D flowerlike
B-In,S;,*" nanoparticles of In,S;,*> B-In,S; nanoplates,** 1D p-
In,S;/In,0; micro-tubes,** In,S; thin film,*> In,S;/BiOIl
composites,*® Ni-doped In,S; powders,*” nanosheets of In,S;/
S-C;N,-dots,*® In,S; quantum dots,**° In,S; single crystal,”">
v-In,S; and B-In,S; colloidal nanoplatelets,® hierarchical Bi,Ss/
In,S; core/shell microspheres,®® In,Se; nanowires,> monolayer
B-In,Se; nanosheets,>® etc.

In this work, a high-yield hydrothermal technique was
utilized to synthesize nanostructures and 1D nanofibers of
In,S;, In,S; 5Se; 5 and In,Se;. The use of sonic waves in the
sonochemical technique prevented aggregation of the nanos-
tructures and 1D nanofibers during the growth process, result-
ing in high-quality products. The nanostructures and 1D
nanofibers were systematically characterized for their chemical
composition, structure, morphology, etc. Photodetectors based
on the as-grown product were fabricated and investigated

Pathway I: Reaction pathway for the synthesis of In,S;
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systematically. The results of photocurrent measurements indi-
cate that 1D nanofibers made of semiconducting In,Se; exhibit an
outstanding response to white light, showing a photo-responsivity
of 180.5 mA W™ . This value is four times higher than the photo-
responsivity of In,S; and In,S; sSe; 5 nanostructures.

2. Experimental

2.1. Chemicals

Indium(m) chloride tetrahydrate (InCl;-4H,0) [~99.99%, Sisco
Research Laboratories (SRL) Pvt. Ltd, India], thioacetamide
(C,H5NS) [ ~99.00%, Sisco Research Laboratories (SRL) Pvt. Ltd,
India], selenium dioxide (SeO,) [ ~98.00%, HiMedia Laboratories
Pvt. Ltd, Mumbai, India], N-cetyl-N,N,N-trimethylammonium bro-
mide (CTAB) [ ~99.00%, HiMedia Laboratories Pvt. Ltd, Mumbai,
India], and hydrazine monohydrate (NH,NH,-H,0) [~ 98.00%,
Sigma-Aldrich, United States].

2.2. Synthesis of In,S; nanostructures

Initially, 20 mL of 0.5 M InCl;-4H,0 (2.06 g) is mixed with
20 mL of 0.5 M C,H;NS (0.22 g) under constant stirring for
30 minutes. The aforementioned solution is then augmented
with 1.08 g of 0.2 M surfactant CTAB. The solution is then
placed in a double-walled stainless steel vertical autoclave

N Cl $ (o}
4 A 3
N + - S
cl—i—i’ ;. .4H,0 ——>» In"" + Cl + H,0 ————» + HS
] N7
' ’
el HiC NH; HaC NH;
CH;
N ~|,CHs
2In > + 3H, : SNt
In* +3H,S + e
l CTAB CHy
CH,
> P | cHy
In,S;+6H" 4 T‘&_
) A CTAB CHy -
Pathway II: Reaction pathway for the synthesis of In,Se; | icu,
2In Y +3Se  + 6/\/\/\/\/\/\/\/\"‘ ;
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Se0,+ NH,NH, . H,0 S\ WP +N, +3H,0 l
CH,
/\/\/\/\/\/\/\/\l _CH,
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Pathway I1I : Reaction pathway for the synthesis of In,S, sSe, 5

/\/\/\/\/\/\/\/\'lr,cu,
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Fig. 1 The reaction pathway for the synthesis of In,Ss, In,Ses and In,S; 5Se; s nanostructures.
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(a) and (b) The core level spectra of indium (In 3d) and sulfur (S 2p) in In,S3 nanostructures. (c)—(e) The core level spectra of indium (In 3d), sulfur (S

2p), and selenium (Se 3d) in In,S; sSer s nanostructures. (f) and (g) The core level spectra of indium (In 3d) and selenium (Se 3d) in In,Sez nanostructures.

(operating at 383 K for 12 hours, with a pressure range of 10-
12 bar, 230 V, 50-60 Hz, and 2 kW). The final solution takes on
a yellow hue. The precipitates are then filtered via Grade-5 filter
paper. Multiple washes are used to remove contaminants from
the yield before it is dried in an oven for 10 hours at 318 K.

2.3. Synthesis of In,S,; sSe, 5 nanostructures

At first, 20 mL of 0.5 M InCl3-4H,0 (1.70 g) is mixed with 20 mL
of 0.5 M SeO, (0.33 g) and stirred for 30 minutes. After
30 minutes of stirring, 20 mL of 0.5 M NH,NH,-H,0 (0.26 g)
is introduced to the solution. After that 20 mL of 0.5 M C,H;NS
(0.09 g) is added to the solution under stirring for 30 minutes.
Finally, 0.54 g of surfactant CTAB (0.2 M) is added to the
aforesaid mixture. The prepared solution is placed into the
vertical autoclave under the same circumstances as previously
stated. The final product has a brownish-yellow hue. The
filtration and drying conditions remain constant.

2.4. Synthesis of In,Se; nanostructures

Initially, 20 mL of 0.5 M InCl3-4H,0O (1.44 g) is mixed with
20 mL of 0.5 M SeO, (0.56 g) under steady stirring for 30 minutes.
After 30 minutes of stirring, 20 mL of 0.5 M NH,NH,-H,0
(0.51 g) is introduced to the solution. The aforementioned

4180 | Mater. Adv., 2024, 5, 4178-4186

solution is then augmented with 0.18 g of surfactant CTAB at a
concentration of 0.2 M. Under the same conditions, it is then
transferred to the vertical autoclave. A brownish hue develops in
the final solution. The process of filtration and drying does not
change.

2.5. Reaction mechanism

The reaction mechanism of indium sulfide (In,S;), indium
selenide (In,Se;), and mixed indium sulfoselenide (In,S; 5Se; 5)
compounds can be described as follows as shown in Fig. 1. The
formation mechanism of InS and InSe can be described
through pathway I and pathway II, respectively. In the case of
In,S; sSey s, the reaction mechanism combines the pathways
for In,S; and In,Se;. The sulfur and selenium atoms simulta-
neously react with indium atoms, leading to the formation of
indium sulfoselenide, as depicted in pathway III.

3. Results and discussion
3.1. X-ray photoelectron spectroscopy (XPS)

The electronic states and chemical composition of the surface
of the In,S;, In,S; 5Se; 5, and In,Se; nanostructures were stu-
died using XPS and exhibited in Fig. 2. Fig. 2(a and b) displays

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3ma00808h

Open Access Article. Published on 21 marec 2024. Downloaded on 21. 01. 2026 21:27:04.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Paper Materials Advances
. In,S In.S,Se,,
( ‘1) nS, (b) 515
s -~ hkl)’=In,Se, (hkl)*=In,S,
Z Z
£ =
= =
S 2
= =
g
10 70 80 10 80
20 (degree) 20 (degree)
(c) In,Se,
g
s
3|
g
z
w —_
g g
E 7
835 &5 ¢
178 g 8
|| N L A . :

10 20 30

40 50 60 70 80
20 (degree)

Fig. 3 The XRD patterns of (a) In,Ss, (b) In;S155€e15, and (c) In,Ses nanostructures.
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Fig. 4 Surface morphology and size distribution analysis of (a) and
(b) In,S3 nanostructures, (c) and (d) In,S; 5Seq s nanostructures and nano-
plates, and (e) and (f) In,Ses nanofibers, and (g) EDS mapping of In,Ses
nanofibers.
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an XPS spectrum of In,S; nanostructures. The survey spectra
exhibit the presence of In, S, and C elements, as shown in
Fig. S1(a) (ESIt). The XPS spectra of the In 3d core level are
further decomposed into two peaks at the binding energy of
445 eV and 452.6 eV corresponding to In 3ds,, and In 3d;,,°° as
depicted in Fig. 2(a). The S 2p spectrum (Fig. 2b) shows two
peaks at 161.3 eV and 162.5 eV, corresponding to S 2pz/, and S
2pip. On the other hand, Fig. 2(c-e) demonstrates the
In,S, 55€, 5 nanostructure XPS spectra. The survey spectrum
of In,S; 5Se; 5 showing the presence of In, S, Se, and C elements
is depicted in Fig. S1 (b) (ESIt). In the XPS spectrum of In 3d,
the main peaks observed at 445 eV and 452.6 eV correspond to
In 3ds/, and In 3d3, core levels, as shown in Fig. 2(c). Moreover,
spectrum S 2p, as depicted in Fig. 2(d), reveals four peaks at
161.1 eV and 162.3 eV, corresponding to S 2p;/, and S 2py,. The
peaks at 163.7 eV and 164.9 eV are attributed to S2pz, and S
2ps/, of S in C-S, respectively. Also, Fig. 2(e) shows that the Se
3d peaks are located at 54.8 eV and 55.7 eV, respectively.””
Additionally, Se-O bonding structures at 59.1 eV confirm the
oxidation of Se species (SeO,) on the surface.>” Furthermore,
Fig. 2(f and g) demonstrates pristine In,Se; nanostructure XPS
spectra. The survey spectra of In, Se and C elements are shown
in Fig. S1(c) (ESIt). In the high-resolution In 3d spectrum, the
binding energies at 445 eV and 552.6 eV are attributed to the In
3ds/, and In 3d;),, as depicted in Fig. 2(f). In the spectrum of Se
3d, two small peaks for binding energies at 54.8 eV and 55.7 eV
are observed for Se-Se bonds. Also, the 59.1 eV peak is
consistent with SeO,, as shown in Fig. 2(g). The SeO, peak
shows a good signal compared to the Se-Se bonds, indicating
that the Se-Se bonds are fragile. However, there is a very tiny

Mater. Adv., 2024, 5, 4178-4186 | 4181
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chemical shift, which means that the In, S, and Se valence
states are still stable for In,S;, In,S;sSe;5, and In,Se;
nanostructures.””>®

3.2. X-ray diffraction (XRD)

The XRD profile of the nanostructures is shown in Fig. 3. The
patterns are recorded in a range of 20 from 10° to 80°. The
observed peaks are sharp at the top and have broad width at
half maxima indicating that the nanoforms are of good poly-
crystallinity having fine grains. From the analysis, In,S; nanos-
tructures possess a hexagonal structure of the unit cell with
lattice parameters a = b = 7.6231 A, ¢ = 32.35 A, = § = 90°, and
y = 120° which agrees well with JCPDS card no. 00-032-0456.
In,S, 5Se; s nanostructures possess a cubic structure of the unit
cell with lattice parameters = b =c=10.8 A, and o = § =y = 90°
which agrees well with JCPDS card no. 00-032-0456. In,Se;
nanostructures possess a hexagonal structure of the unit cell
with lattice parameters a = b = 7.05 A, c=19.88 A, 0= f=90° and
y = 120°, which agrees well with JCPDS card no. 00-032-0456.

3.3. Scanning electron microscopy (SEM)

The morphology of the In,S;, In,S;sSe;s and In,Se; nano-
structures is depicted in Fig. 4. Fig. 4(a) shows the FESEM
image of In,S;, revealing the presence of nanostructures with
an average size ranging from 700 nm to 2500 nm. The size
distribution of the nanostructures is displayed in Fig. 4(b).
Some of the nanostructures exhibit cubic shapes, as shown in
the inset of Fig. 4(a). On the other hand, Fig. 4(c) displays the
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FESEM image of In,S;.5Se; 5, indicating the presence of nanos-
tructures and nanoplates. The formation of In,S; sSe; 5 nanos-
tructures and nanoplates may be attributed to the combination
of In,S; and In,Se; nanostructures, which is supported by the
mixed phase observed in the XRD profile of In,S; 5Se; 5. The
width of some nanoplates is around 1250 nm, as shown in the
inset of Fig. 4(c). The size distribution of the nanoplates is
depicted in Fig. 4(d). Furthermore, EDS mapping of In,S;
and In,S; sSe; 5 nanostructures is shown in Fig. S2 (ESIT). In
contrast, the FESEM image of In,Se; shows a nanofiber mor-
phology as shown in Fig. 4(e). The length of a single nanofiber
is approximately 3660 nm, and the width is around 139 nm.
The average width distribution of the nanofibers is presented in
Fig. 4(f). These nanofiber morphologies enhance the perfor-
mance of the photodetector due to their large surface area.
Additionally, the EDS mapping of the In,Se; nanofibers con-
firms the successful presence of indium and selenium ele-
ments within the nanofiber structure, as shown in Fig. 4(g).

3.4. Energy dispersive spectroscopy (EDS)

EDS is a reliable and effective technique for identifying ele-
mental composition in nanostructures.>®*> The EDS spectra of
the as-synthesized nanostructures are shown in Fig. S3 (ESIT).
Compared to the In,S; sSe; s and In,Se; nanostructures, the
amount of In in the as-synthesized In,S; is slightly higher,
according to the data analysis. In general, they are nearly
stoichiometric. The absence of any other peaks in the spectra
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Fig. 5 The (a) I-V characteristics, (b) pulse photoresponse of In,Ss, In,S; sSey s, and In,S3 nanostructures, (c) pulse photoresponse of In,Ses nanofibers at
different illumination, and (d) pulse photoresponse of In,Sez nanofibers at different intensity.
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Table 1 The typical photoresponse parameters of the In,Ss, IN,SysSeq s, and In,Ses nanostructures at 1 mV bias voltage and comparison with reported

data
Intensity Photo Responsivity Detectivity x Rise Decay
Sample llumination source (mW ecm™2) current (LA) (mAW™) 10° (Jones)  EQE (%) time (s) time (s)
In,S; White LED 10 2 5.3 1.45 — 5.9 6.7
In,S; 55€; 5 White LED 10 18 47.7 9.44 — 5.0 6.2
In,Se; White LED 10 70 185.8 23.3 — 8.8 9.5
White LED 20 101 146.0 18.3 — 8.8 9.5
White LED 50 308 163.5 20.5 — 8.8 9.5
White LED 100 680 180.5 22.6 — 8.8 9.5
485 nm LED 5 6.8 36.0 2.36 9.22 8.8 9.5
560 nm LED 5 8.0 42.4 2.74 9.41 8.8 9.5
670 nm LED 5 10.1 53.1 3.46 9.85 8.8 9.5
Reported In,S;** White light Bias 5 V 100 100.5 0.59 0.10 — 3.7 3.7
Reported few layered InSe®® 633 nm LASER Bias 10 V. 0.28 — — 54.7 — — —

is strong evidence that the synthesised nanostructures are
chemically pure.

3.5. Photo detection application

To study the photo-detection applications of In,Ss, In,S; 5Se; 5
and In,Se; nanostructures separately, a glass substrate is used
and the channel is prepared by making thin and straight marks
using a glass cutter. Then, the suspensions of In,Ss, In,S; 5Se; 5
and In,Se; nanomaterials are drop-casted multiple times on a
channel with continuous heating at 100 °C to remove the
dispersing medium (distilled water). Two copper wires are
bonded on the prepared samples using Ag paste. The prepared
devices were further annealed at 120 °C for 5 h and used for
photo-detection experiments. The various temporal detecting
experiments are performed using a Keithley-4205 SMU.

First, as shown in Fig. 5(a), the current-voltage character-
istics of the devices were measured. The I-V curves for the
devices are linear, indicating that the connections between the
nanostructures and the Ag electrodes are ohmic. The current is
found to increase as Se replaces S. In order to examine the
transient photoresponse of the prepared devices, the light is
turned on and off at regular intervals. At a bias voltage of 1 mV
and under white light with a power intensity of 10 mW cm ™2,
the device’s current is plotted as a function of time in Fig. 5(b).
The devices had a consistent and reliable response to white
light. Time constants are calculated for both the current rise
(Trise - the time needed for the current to increase by 90%) and
decay (tgecay - the time needed for the current to decrease by
10%). In addition to these, the photocurrent (I, = Lildark,
where I is the current under illumination and I, is the
current in the dark) appears to be amplified from 2 pA for pure
In,S; to 70 pA (35 times) for the In,Se; sample. The photo-
response of the In,Se; nanofibers under different illumination
intensity (10, 20, 50 and 100 mW c¢m ™ ?) is shown in Fig. 5(c).
A detailed photodetection study of In,Se; device was carried out
with different illumination sources. Fig. 5(d) shows the wave-
length dependent pulse-photo response, examined at 485 nm,
560 nm and 670 nm light sources at intensity 5 mW cm™? and
bias voltage 1 mV. The good response at 670 nm illumination is
due to the maximum optical absorbance for the In,Se; nano-
fiber device.®® In contrast, nanofibers have a larger surface
area-to-volume ratio than nanostructures, which can enhance

© 2024 The Author(s). Published by the Royal Society of Chemistry

the absorption of incident light and increase the number of
charge carriers generated. This can lead to a higher photocurrent
and sensitivity in photodetection. The detector parameters uti-
lised in the quantitative study, including photo-responsivity,
detectivity, EQE (%), rise time, and decay time at specific
conditions are listed in Table 1. They are evaluated using
standard equations reported by Zhou J et al.>® A comparison of
the reported photodetection parameters is provided in Table 1.

1D In,Se; nanofibers are likely to have a higher photo-
detector response compared to In,S; and In,S;sSe; s nano-
structures due to their unique properties. One possible reason
for this higher response is the morphology of the nanofibers.
Nanofibers have a high surface area to volume ratio, which can
increase the interaction between the material and the incident
light, leading to a higher photodetector response. Another
factor is the electronic properties of In,Ses. In,Se; has a narrow
bandgap, which means that it can absorb a wide range of
wavelengths of light, making it a good candidate for photo-
detection. Additionally, In,Se; has high carrier mobility and a
long carrier lifetime, which can enhance the efficiency of
charge separation and transport, leading to a higher photo-
detector response.

The photodetector properties of 1D In,Se; nanofibers are
studied through detectivity and responsivity. The results show
that the nanofibers exhibit a detectivity of 22.6 x 10° Jones.
These detectivities are higher than those of other Se-based
materials such as 2D layered Ta,NiSes,°® PdSe, flakes,®” SnS,/
InSe heterostructures,®® ZrSe;°° and PANI/Zn0O.”® These findings
suggest that 1D In,Se; holds promise as a material for utilization
in photodetector devices.

4. Conclusion

The hydrothermal method was successfully employed to
deposit nanomaterials of In,S;, In,S; sSe; s, and In,Se; onto
glass substrates. A study was conducted to investigate the
effects of semiconductors In,S;, In,S;sSe;s, and In,Se; on
their structural, morphological, compositional, electrical and
photodetector properties. The presence of constituent elements
in the In,S;z, In,S;s5Se;s, and In,Se; was confirmed through
EDS and XPS studies. The responsivity values of the In,S;,
In,S; 5Se;5, and In,Se; photodetectors were approximately
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5.31, 47.7, and 185.8 mA W™, respectively. The highest detec-
tivity of 23.3 x 10° Jones was obtained in the In,Se; sample. The
photodetectors exhibited very short response times, ranging
from 5 to 8.8 seconds. The higher photodetector response of
the 1D In,Se; nanofibers compared to In,S; and In,S;sSe; s
nanostructures may be due to their larger surface area-to-volume
ratio, crystal structure, and composition, and the dimensions of
the nanofibers. These findings suggest that In,Se; nanofibers
have potential applications in visible-light selective photo-
sensing devices.
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