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licit solvent models of
heterogeneous catalysts with machine learning
interatomic potentials†

Benjamin W. J. Chen, * Xinglong Zhang * and Jia Zhang

Realistically modelling how solvents affect catalytic reactions is a longstanding challenge due to its

prohibitive computational cost. Typically, an explicit atomistic treatment of the solvent molecules is

needed together with molecular dynamics (MD) simulations and enhanced sampling methods. Here, we

demonstrate the utility of machine learning interatomic potentials (MLIPs), coupled with active learning,

to enable fast and accurate explicit solvent modelling of adsorption and reactions on heterogeneous

catalysts. MLIPs trained on-the-fly were able to accelerate ab initio MD simulations by up to 4 orders of

magnitude while reproducing with high fidelity the geometrical features of water in the bulk and at

metal–water interfaces. Using these ML-accelerated simulations, we accurately predicted key catalytic

quantities such as the adsorption energies of CO*, OH*, COH*, HCO*, and OCCHO* on Cu surfaces

and the free energy barriers of C–H scission of ethylene glycol over Cu and Pd surfaces, as validated

with ab initio calculations. We envision that such simulations will pave the way towards detailed and

realistic studies of solvated catalysts at large time- and length-scales.
1. Introduction

In both homogeneous and heterogeneous catalysis, solvents
play important roles by affecting chemical equilibria, rates of
reaction, and product selectivities, as well as reaction yields.1–3

Solvents exert these inuences through their molecular inter-
actions with the catalyst as well as with reactants, products, and
intermediates.3,4 To model these interactions, computationally
inexpensive implicit solvation models, which treat the solvent
environment as a structureless continuum,5,6 are routinely used
to model organic and organometallic catalysts,7,8 as well as
heterogeneous catalysts.9,10

Yet, implicit solvation models have several well-known
deciencies: they fail to quantitatively account for hydrogen
bonding, as well as entropic effects in free energy
calculations.11–13 Due to these deciencies, solvation energies of
the same transition state can differ by up to 5 kcal mol−1 when
applying different implicit solvation models.14 In addition,
implicit solvation models predict overly stabilized salt bridges15

and give incorrect ion distributions in biomolecular simula-
tions,16 which are especially pronounced in polar solvents. The
failure of implicit solvation models to accurately predict
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54
solvation energetics leads to unphysical congurational
sampling, further compounding the energetic errors.17

To rectify these deciencies, an explicit atomistic description
of the solvent environment is required. For example, Liu et al.
demonstrated using ab initio molecular dynamics (AIMD)
simulations of glycosylation reactions in explicit solvent that
solute–solvent interactions and solvation-related entropic
contributions were crucial for determining the correct catalytic
mechanisms.18 Despite their advantages, explicit solvation is
seldom used as computationally intensive MD simulations are
required to adequately sample the congurational space of
explicitly solvated systems. While empirical force elds (FFs) are
popular in dynamical simulations of large-scale systems and are
much faster than rst-principles density functional theory
(DFT) calculations,19,20 their accuracy depends on how well they
are parametrized. In addition, special techniques or FFs, such
as the empirical valence bond (EVB)21 method or ReaxFF,22,23

may be needed to model chemical reactions. However, they are
challenging to parameterize and are oen not generalizable.
Semi-empirical methods such as density-functional tight
binding (DFTB)24,25 and GFN-xTB26–28 have also been developed
to reduce computational cost while aiming to maintain
predictive accuracy. Despite these efforts, achieving ab initio
accuracy at an affordable cost remains out of reach.

Recently, however, machine learning interatomic potentials
(MLIPs) have demonstrated great promise, being able to reach
near-DFT accuracy while maintaining near classical FF cost.29–32

MLIPs t the underlying potential energy surface (PES) of
a training dataset of atomic congurations with associated
© 2023 The Author(s). Published by the Royal Society of Chemistry
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energies and forces. This mapping is fundamentally achieved by
transforming the structures into representations that are
invariant or equivariant to translation, rotation, and permuta-
tion via atomic descriptors that ngerprint the local atomic
environment. However, to train an MLIP with DFT-level accu-
racy, thousands of DFT calculations are typically required,
which is a large upfront cost. It is also tricky to decide which
congurations to include in the training set to produce
a generalizable potential. Fortunately, both these challenges
can be tackled by employing active learning techniques, which
build training sets on-the-y by judiciously selecting the next
best data points to learn from.33–36

MLIPs have been successfully applied to accelerate searches
of local and global minima37–42 and transition states,41,43,44 and
have shown good accuracy in modelling a variety of systems,
including solvated metal and inorganic interfaces,45,46 metal
and metal oxide surfaces,47–50 crystal structures of carbon and
boron,51 organic molecules,52,53 and bulk water.54 More recently,
sparse Gaussian process regression (SGPR) based ML models
for training highly generalizable and transferable force elds at
low computational cost have found success in a wide range of
applications including macromolecules,55 batteries,56 solar
cells,57 and catalytic reactions.58 Yet, there is a lack of studies
and benchmarks59 to determine if MLIPs can efficiently model
solvation effects for processes in heterogeneous catalysis such
as adsorption and bond breaking and formation—this is chal-
lenging as the solvent–catalyst interface comprises of two
chemically very different systems. Additionally, the formation
and breaking of bonds is notoriously tricky for interatomic
potentials to describe as it involves changes in the local chem-
ical environment of the involved atoms.

In this work, we therefore demonstrate the ability of MLIPs,
trained on-the-y via an active learning framework, to simulate
explicitly solvated heterogeneous catalytic systems. We show
that these ML-accelerated MD (MLaMD) simulations can
indeed greatly accelerate the modelling of heterogeneous cata-
lysts while maintaining near-DFT accuracy. Specically, we will
evaluate three different MLIPs to determine the most accurate
MLIP for use in our MLaMD simulations. We then show that
these simulations can reliably reproduce the structure of bulk
water as well as water at water–metal interfaces. Finally, we
validate the ability of our simulations to accurately provide
catalytic properties such as adsorption energies over Cu
surfaces, as well as free energy barriers over C–H bond scission
over Cu(111) and Pd(111) via MLaMD-based metadynamics
simulations.

2. Results
2.1 Validation and comparison of various machine learning
potentials with bulk solvents

Thorough benchmarking of the accuracy of MLIPs is crucial as
different MLIPs may possess strengths and weaknesses for
different systems. We thus sought to determine which MLIP
would be most accurate for solvated systems by probing their
ability to model bulk water. We tested three MLIPs—the
moment tensor potential (MTP),60 the Accurate Neural Network
© 2023 The Author(s). Published by the Royal Society of Chemistry
Engine for Molecular Energies (ANI)61 and Schnet.62 Our study
focused on these MLIPs as (1) they are widely used in the
literature, and (2) they are based on different architectures and
methods of ngerprinting local atomic environments.

We prepared a diverse training set (T1, Table S1†) consisting
of 800 congurations via AIMD simulations of bulk water with
100H2O molecules at 3 different densities, namely 0.91, 1.00,
and 1.11 times the water experimental density. We additionally
prepared test sets of bulk water with 60, 100, and 200H2O
molecules, each with 600–1000 congurations obtained from
AIMD simulations at 300 K and 473 K (E1 and E3–E7, Table S1†),
to evaluate the ability of the MLIPs to extrapolate to unseen
congurations. Hyperparameters were optimized individually
to achieve the best performance for each MLIP (Tables S2–
S20†). Sections S1 and S2 in the ESI† contain more details of the
preparation of the datasets and the screening of hyper-
parameters, respectively.

The results of our benchmarking are shown in Fig. 1a. MTP
shows the best training and test performance across all data-
sets, with the smallest energy (Fig. 1a, top) and force (Fig. 1a,
bottom) root mean square errors (RMSEs) of approximately 0.4
meV per atom and 0.05 eV Å−1, respectively. Interestingly,
these errors are almost 5 times lower than that of ANI, and 10
times lower than Schnet. The excellent performance by MTP
could be due to the relatively small training set used (800
congurations); this favours potentials with less parameters,
such as MTP, which is fundamentally based on simple linear
combinations of polynomials, and are thus less prone to
overtting.60

On the other hand, neural network (NN)-based MLIPs like
ANI and Schnet have many more parameters and are likely
overtted with the limited training set data, as observed by their
much poorer performance on the test sets as compared to on
the training set (Fig. 1). Still, we did not nd any signicant
improvement in the performance of ANI and Schnet by using
a larger training set of 2400 datapoints (T2) (Fig. S2 and Section
S2.5†). This could be because the congurations from T2 may
be quite similar to those in T1, since T1 is a subset of T2.
Training sets with more structurally diverse congurations,
which are correspondingly more costly to generate, might
therefore be necessary to improve the performance of ANI and
Schnet. In the subsequent analyses, we therefore focus on MTP
due to its excellent performance with small training sets, which
are more cost-efficient for practical applications.

Besides its ability to reproduce the potential energy surface,
a good MLIP should also provide realistic solvent geometries
and atomic distributions (Fig. 1b). We compared the O–O
radial distribution functions (RDFs) of bulk H2O obtained via
AIMD and MLaMD simulations using MTP, nding good
agreement of the AIMD and MLaMD RDFs. Both the RDFs also
match the experimental RDF63 well (Fig. 1b, top). The MLaMD-
obtained distributions of H-bond lengths and angles also
match those of the AIMD simulations well (Fig. 1b, middle and
bottom). These ndings conrm the ability of the MLaMD
simulations to faithfully reproduce the structure of bulk water,
which is the rst step towards accurate modelling of solvated
systems.
Chem. Sci., 2023, 14, 8338–8354 | 8339
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Fig. 1 Energetic and geometric properties of bulk water predicted by MLIPs. (a) Root mean square errors (RMSEs) of the energy per atom (top)
and force components (bottom) for MTP, Schnet, and ANI trained with the T1 dataset and evaluated on the E1, E3–E7 test datasets. Error bars
represent standard errors from triplicate runs. Pale horizontal bars indicate the test set errors to aid comparison. (b) Geometric properties of bulk
water from AIMD and MLaMD simulations with MTP. (Top) O–O radial distribution function, rO–O. The experimental RDF from Skinner et al.63 is
provided for reference. (Middle) Hydrogen bond lengths, rOH. (Bottom) Hydrogen bond angles, qOHO.
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2.2 MLIPs and active learning: MLaMD simulation
framework

To perform MLaMD simulations, we combined the MTP with an
in-house active learning scheme, which simultaneously generates
training data via DFT calculations for tting of the potential
(Fig. 2a, right) whilst running MLaMD simulations (Fig. 2a, le).
At its heart, the active learning algorithm decides whether more
training data is required by tracking the reliability of the ML
predictions as theMLaMD simulation progresses. Specically, the
Maxvol algorithm64 in theMLIP package65was used to calculate an
extrapolation grade, g, for the conguration under consideration.
Congurations that are interpolations of those already in the
training dataset—and therefore likely well-described by ML—
would have a low g. Congurations that are extrapolations—and
likely poorly described by ML—would have a high g. When g is
above a certain threshold, the conguration is selected for DFT
evaluation to augment the training dataset. Else, the potential is
used as is to evaluate the conguration and continue the MD
8340 | Chem. Sci., 2023, 14, 8338–8354
simulation. DFT calculations are also performed every 100 000
steps to periodically reaffirm the reliability of the ML predictions.

Most implementations of active learning involve a multiple
step process, such as performing several simulations to itera-
tively train a ML model. However, our protocol implements
active learning on-the-y during a simulation itself and does not
require multiple iterations. To achieve this, we have employed
an adaptive g threshold, as explained in detail in Section S3.† In
this way, our active learning procedure improves the efficiency
of our simulations without compromising on accuracy.

Traditionally, comprehensive datasets have to be generated
for training reliable MLIPs. However, implementing the active
learning algorithm above allows us to selectively choose appro-
priate congurations for training, reducing the cost of generating
the training database. Additionally, it increases the accuracy of
the MLaMD simulations since inaccurate predictions are typi-
cally caused by extrapolated congurations: active learning can
detect such congurations, evaluate them with DFT, and nally
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Illustration of the active learning algorithm for MLaMD simulations. (a) Flow chart of the active learning algorithm. (b) Example trajectory of
a 500 ps MLaMD simulation conducted at 300 K with MTP for CO* on Cu(111). The top panel shows the energetic error per atom of the ML
evaluations for each DFT evaluation. No bars are present when there are no DFT evaluations. The bottom panel shows the energy of the
simulation versus time. Energies are relative to the average energy of the simulation, hEi.
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assimilate them into the training database, thereby iteratively
producing better tting PESs of the system under consideration.

An illustration of the trajectory of a MLaMD simulation is
shown in Fig. 2b. At the beginning of the simulation, more DFT
evaluations (Fig. 2b, red dots) are required to populate the
training database whereas fewer DFT evaluations are required
near the end since the MTP is already well trained.

For a typical adsorption energy calculation involving 8 MD
replicas with different initial congurations (see Methods), we
required ∼200 00× less DFT calls than for analogous AIMD
simulations—only∼600 DFT calculations were needed to simulate
the 12 ns of total MLaMD simulation time, made up of 1 ns of
equilibration and 0.5 ns of production for each MD replica (Table
S24†). The high efficiency of MLaMD simulations is in large part
thanks to the active learning strategy employed, which only
performs DFT calculations on-the-y during the MD simulation
itself when exploring unknown congurational space. We note
that the speed up of MLaMD simulations can only be computed
approximately as it depends on the simulation length: the longer
the simulation, the larger the speed up. This is because almost no
DFT calculations will be required once the potential is well-trained.
2.3 Solvation of adsorbates in water lms at metal surfaces:
CO* and OH* on Cu(111)

Metal–water interfaces combine two systems with very different
chemistries and are therefore more complex than bulk water.
© 2023 The Author(s). Published by the Royal Society of Chemistry
We show in the following sections that MLaMD simulations can
describe the solvation of adsorbates at metal–water interfaces,
which model heterogeneous catalysts in an aqueous environ-
ment. Specically, we studied in detail how water solvates
a clean 3 × 3 unit cell of Cu(111), as well as two common
adsorbates, CO* and OH*, adsorbed on Cu(111) (Fig. 3). These
two adsorbates were chosen for in-depth study as they are
representative of intermediates that are capable and incapable
of hydrogen bonding, respectively. A water lm of 32H2O
molecules was used to solvate all systems. More details of the
system setup can be found in the Methods section.

2.3.1 Validation of the accuracy of MLaMD simulations. To
determine how dependable MLaMD simulations are for
modelling solvated interfaces, we rst explored whether water
structures obtained from MLaMD simulations were similar to
those from AIMD simulations. We focused on the clean Cu(111)
system for simplicity. The MLaMD simulations were run for 500
ps whereas the AIMD simulations were only run for 50 ps due to
computational constraints; both simulations were carried out at
300 K.

To compare the water structures, we ngerprinted them with
5 commonly used structural descriptors for water, namely the
(1) d5,66 (2) z,67 (3) local structure index (LSI),68 (4) q,69 and (5)
structural entropy (S2)70 descriptors. We then performed a 2-
dimensional (2D) t-distributed stochastic neighbor embedding
(t-SNE)71 analysis on these ngerprints. The resulting t-SNEs for
Chem. Sci., 2023, 14, 8338–8354 | 8341
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Fig. 3 Atomic illustrations of the systems simulated—clean Cu(111), adsorbed CO*/Cu(111), and OH*/Cu(111). Side and top views are shown.
Water molecules are rendered in a licorice representation, other atoms are represented as spheres. Note that for clarity, the side view does not
show the entire unit cell in the z-direction. Color code: brown – Cu, red –O, white –H, grey – C, cyan –O atoms of adsorbates, yellow-H atom
of OH.
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structures obtained from AIMD and MLaMD are shown in
Fig. 4a, where each data point represents a sampled structure.
For comparison, a similar analysis was also performed on the
nal training set obtained from the MLaMD simulations.

The congurations from the AIMD and MLaMD simulations
cover similar areas of the latent space. Interestingly, the
MLaMD simulations additionally cover a small space not found
in the AIMD simulations (Fig. 4a, top middle panel)—these are
more stable congurations with a greater degree of H-bonding
(Fig. 4a, bottom middle panel). That the MLaMD simulations
managed to access these congurations is likely due to their
longer timescales (500 ps) compared with the AIMD simulations
(50 ps): typically, longer simulation times on the order of
hundreds of picoseconds to nanoseconds are necessary to
obtain well-equilibrated water structures and properties.72–74

The importance of longer simulation times to improve
sampling is discussed further in the next section.

The training set structures generated from on-the-y from
the MLaMD simulation cover a larger region of the latent space
as they include structures encountered in the equilibration
phase conducted before production, such as the initial cong-
urations that were randomly created and thus have high energy
and little hydrogen bonding, as well as congurations
encountered at high (∼450 K) and low (∼100 K) temperatures
(Fig. 4a; right panels). This provides additional condence that
the congurations encountered in the MLaMD simulations are
well-described by our trained models as they are interpolated
from the training set.
8342 | Chem. Sci., 2023, 14, 8338–8354
We next analyzed the accuracy of MLaMD simulations by
comparing the energies and forces of 160 congurations
sampled from the MLaMD trajectories against single-point ab
initio calculations. Encouragingly, the MLaMD simulations
show near-DFT accuracy, with low energetic and force mean
absolute errors (MAEs) of 0.87 meV per atom and 0.041 eV Å−1

(Fig. 4b). Similar results were found for the Cu(111)/CO* and
Cu(111)/OH* systems (Table S21 and Fig. S4, S5†). The trajec-
tories of the AIMD and MLaMD simulations are also practically
indiscernible (Fig. 4c). Overall, these results demonstrate that
MLaMD simulations reproduce the ab initio potential energy
surface of solvated systems with a high degree of delity. For the
interested reader, Section S3† presents more details on how we
veried the accuracy of the MLaMD simulations.

2.3.2 Energetic convergence of MLaMD simulations.
Compared with AIMD simulations, a key advantage of MLaMD
simulations is their ability to access extended timescales. This
leads to improved congurational sampling and thus more
accurately averaged quantities including binding energies. To
investigate the energetic convergence of our studied systems, we
tracked the evolution of three quantities as their simulations
progressed (Fig. 5): (1) the total energy, (2) the autocorrelation
function of the energy, which sheds light on the relaxation
timescales of the system, and (3) the value of z, a structural
descriptor of water dened as the difference between the
nearest non-hydrogen-bonded neighbour distance and the
farthest hydrogen-bonded neighbour distance.67 Larger z values
indicate a more ordered second solvation shell, increased
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 MLaMD simulations of solvated clean Cu(111). (a) t-SNE visualization of water configurations from AIMD and MLaMD simulations, and of
the training dataset obtained from the MLaMD simulations. Data points are color coded based on their relative energy to the most stable
configuration (top) and average number of hydrogen bonds between water molecules (bottom). (b) Energetic (left) and force (right) errors of 160
configurations sampled at 25 ps intervals from each of the eight production MLaMD simulation replicas. Subscripts “ML” and “DFT” represent ML-
and DFT-predicted quantities, respectively. Mean absolute errors (MAEs) and root mean square error (RMSEs) are given. (c) Energies of two
MLaMD and AIMD simulation replicates. Energies are zeroed to the average energy of solvated clean Cu(111) obtained from the MLaMD
simulations. Times (t) are zeroed to t0 = 10 ps, which is the initial discarded portion of the trajectory.
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hydrogen bonding, and a more tetrahedral structure of water.75

Note that for clarity, we only show 4 runs out of a MLaMD
bundle, however, the same trends are observed when consid-
ering all 8 runs (Fig. S9†).

Interestingly, however, the energies of the OH*/Cu(111)
simulations vary greatly and span a large range (∼1 eV), only
beginning to converge aer ∼300 ps (Fig. 5). Despite this, the
average of all runs converges quickly, showing the importance of
multiple replicas. Additionally, we see greater uctuations in the
energy autocorrelation function, indicating the presence of long
timescale correlations in the energies. These correlations are due
to restructuring of water: for example, runs 2 and 4 (Fig. 5, dark
green and blue lines, respectively) show large increases in z from
0.4 to 0.8 at around 220 and 280 ps, respectively. This lasts for
around 100 ps before z decreases back to∼0.4. This indicates an
© 2023 The Author(s). Published by the Royal Society of Chemistry
increase in the ordering of water, which is also reected in
decreases in the average binding energies that occur at the same
time. Such events are not observed in the simulations of clean
Cu(111) or CO*/Cu(111).

The long timescales needed to observe such restructuring in
the OH*/Cu(111) system is likely due to the strong hydrogen
bonding of OH* to the water molecules, which reduces their
mobility, as evidenced by their smaller self-diffusion coeffi-
cients.9 For such systems, longer timescale simulations will be
benecial for achieving more accurate energetics. For example,
compared with shorter AIMD simulations,9 our MLaMD simu-
lations predict OH* to bind more stably on Cu(111), as will be
discussed in more detail in Section 2.3.4.

Overall, our analyses reveal that the nature of the adsorbate
may inuence the simulation time needed for energetic
Chem. Sci., 2023, 14, 8338–8354 | 8343
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Fig. 5 Evolution of MLaMD simulations versus time for Cu(111) systems. (Top) Moving average of binding energies smoothed over a windowof 10
ps. Binding energies are with respect to clean Cu(111), CO(g), H2O(g), and H2(g), where “(g)” indicates a gas-phase species. (Middle) Moving
average of the energy autocorrelation function smoothed over a window of 30 ps. (Bottom) Moving average of z smoothed over a window of 30
ps. Colored dashed lines and triangles highlight structural changes in water occurring in the course of the simulation. The simulation time, t, is
zeroed to t0 = 10 ps, which is the initial discarded portion of the trajectory. The inset shows the definition of z. Color code for atoms: white - H,
red - O of water molecule under consideration, blue - O of hydrogen bonded water molecules, orange - O of non-hydrogen bonded water
molecule. Only 4 out of the 8 runs of a MLaMD bundle are shown for clarity. The trajectories of all 8 runs are provided in Fig. S9.†
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convergence. While short AIMD simulations may be sufficient
for some systems, longer simulations achievable by MLaMD
simulations are needed for systems with poor water mobility to
ensure proper sampling of the conguration space and obtain
accurate energetics.

2.3.3 Structure of water lms at metal–water interfaces.We
next zoomed in on how well MLaMD simulations can reproduce
the properties of water near the metal–water interface, which is
crucial for obtaining accurate solvation properties. To begin, we
probed how the density of water—specically, its O atoms—
changes as a function of the distance, d, away from the Cu(111)
surface (Fig. 6a).

For clean Cu(111), we nd a major peak and a small
shoulder in the water density around d = 3 Å, which corre-
sponds to adsorbed water. There is a smaller peak at around 6
8344 | Chem. Sci., 2023, 14, 8338–8354
Å, aer which the density quickly levels to that of bulk water
at >7 Å (black dotted lines, Fig. 6a). These ndings are
consistent with the literature.45,76 The major peak and its
shoulder can be deconvoluted into two components: (A) a 1st
solvation layer, comprising of directly bound water mole-
cules, also termed watA; and (B) a 2nd solvation layer,
comprising of indirectly bound water molecules hydrogen-
bonded to the 1st solvation layer (Fig. S11†). These mole-
cules are also termed watB.45,76

watA and watB molecules can be distinguished by their
orientation with respect to the surface, as quantied by the
angle q between the water bisection vector and the surface
normal (n̂) (Fig. 6c; inset). For most watA molecules, q is less
than 90° as they are directly bound to surface via their O atom
and are in a H-up orientation. On the other hand, q is greater
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Properties of water at the interface of Cu(111) from MLaMD
simulations. (a) Density of O and H atoms at 300 K as function of the
distance from the surface, d, for clean Cu(111), CO*/Cu(111), and OH*/
Cu(111). Dotted lines represent the densities of bulk water. Sample
atomistic structures for each system are superimposed. Color code for
atoms: brown – Cu, grey – C, red – O, white – H. (b) Surface water
distribution for each of the three systems. Surface water is defined as
water within d = 4.6 Å. See main text for definitions of watA and watB.
Numbers may not sum up to the total due to rounding. (c) Distribution
of the angle between the water bisection vector and the surface
normal, q, versus d for clean Cu(111). Brown dots represent individual
data points; dark blue lines represent the mean q (q�), and error bars
represent standard errors of the mean.
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than 90° for most watB molecules as they are hydrogen bonded
to watA and are in a H-down orientation.45,76

The orientations of watA and watB in their respective solva-
tion layers were captured well by our MLaMD simulations, as
observed from how the average q, q�, changes as a function of
d (Fig. 6c). Near the surface, where d is between 0 and 3 Å, q�
ranges between 50 and 75°, consistent with an abundance of
watA in the 1st solvation layer. When d is between 3–4 Å, there is
a region where q�increases to ∼110°, due to a larger proportion
of watB in the 2nd solvation layer. At d > 4 Å, q�retreats back to
∼90°, corresponding to the random orientation of water found
in bulk water. Consistent with our results, these variations in q�

are also observed on Pt(111) and Au(111).77

Quantifying the amount of watA and watB in each system can
shed light onto how adsorbates alter the metal–water interface.
This is, however, challenging as there is no exact denition of
the distance that delineates the 1st and 2nd solvation layers.
© 2023 The Author(s). Published by the Royal Society of Chemistry
Additionally, the separation between the two solvation layers
could also change with the addition of adsorbates. We therefore
dened a cutoff distance, dcut h 4.6 Å, below which all water
molecules belong to either the 1st or 2nd solvation layer. This
cutoff was chosen as there is a minimum in the water density at
this distance (Fig. 6a). Below dcut, we classify water molecules
with q < 90° as watA, and water molecules with q > 90° as watB.

On clean Cu(111), there are an equal number of watA and
watB molecules (∼2.5), corresponding to a total (watA + watB) of
5.1 adsorbed water molecules. In the 3 × 3 unit cell, this
corresponds to a coverage of 0.56 monolayers (ML), which
agrees well with previous simulations.45 Interestingly, however,
adsorption of CO* and OH* alters the proportion of watA and
watB molecules, as well as the total amount of water adsorbed
(Fig. 6b). For the CO*/Cu(111) system, the total amount of
adsorbed water decreases to 3.9. This is due to the displacement
of both watA and watB from the surface upon CO adsorption.
On the other hand, for the OH*/Cu(111) system, we observe
a surprising increase in the amount of watA as compared with
the clean surface, with a concomitant decrease in the amount of
watB. This can be explained by the ability of OH* to hydrogen
bond to water molecules in the 2nd solvation layer, bringing
them closer to the surface.9

2.3.4 Adsorbate properties at metal–water interfaces. Of
particular interest in heterogeneous catalysis is how solvation
affects the binding geometries and energies of adsorbates as
such changes can greatly impact adsorbate coverages and their
reactivity. In this subsection, we will therefore look at how
explicit solvation changes the properties of adsorbates
compared with implicit solvation and vacuum simulations.

From our MLaMD simulations, we obtained binding ener-
gies of −0.62 ± 0.09 eV and −0.45 ± 0.11 eV for CO* and OH*,
respectively (Fig. 7a). For comparison, the binding energies
calculated by Heenan et al.9 with AIMD explicit solvent simu-
lations (∼30 ps) are−0.77± 0.06 eV and−0.11 ± 0.05 eV. While
the binding energies for CO* for the two methods agree well,
discrepancies in the OH* binding energies could be due to the
better sampling afforded by our longer MLaMD simulations
(500 ps) which leads to more converged energetics, as also
discussed in Section 2.3.2. Additional comparisons of our
MLaMD simulations with AIMD simulations by Heenan et al.
can be found in Section S3.3.†

We compared these binding energies against those obtained
from MLaMD simulations of the systems (1) in vacuum, and (2)
in a Poisson–Boltzmann implicit solvent model as implemented
in the VASPsol package78 (Fig. 7a). The implicit solvent binding
energies are similar (within 0.1 eV) to those in vacuum. Note
that the MLaMD-predicted vacuum and implicit solvent
binding energies are also very similar to those obtained from
static DFT calculations. However, compared with explicit
solvation, on average, implicit solvation overstabilizes CO* by
0.2 eV and understabilizes OH* by 0.4 eV.

These differences can be understood in terms of two main
effects: (1) hydrogen bonding between the adsorbate and H2O,
and (2) displacement of H2O molecules from the surface, also
known as competitive adsorption.9 Our MLaMD simulations
reveal that CO* forms only 0.20 hydrogen bonds with the
Chem. Sci., 2023, 14, 8338–8354 | 8345
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Fig. 7 Energetic and geometric properties of CO* andOH* on Cu(111) fromMLaMD simulations. (a) Binding energies in vacuum, implicit solvent,
and explicit solvent. (b) Number of hydrogen bonds formed between the adsorbate and water. (c) Adsorbate site occupancies in vacuum (Vac),
implicit (Imp), and explicit (Exp) solvent. (d) Top view of a hexagonal water structure formed by the first water layer on Cu(111) for a sample
MLaMD configuration for OH*/Cu(111). Color code for atoms: brown – Cu, red – O, white – H, grey – C, cyan – O atoms of OH*, yellow – H
atom of OH*. (e) Violin plot of energies for configurations with OH* binding on various sites. 100 configurations were sampled from MLaMD
simulations for each site. White circles represent the mean. Error bars in all panels represent the 95% confidence intervals of the mean.
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solvent, while OH* forms 2.88 hydrogen bonds (Fig. 7b), in
agreement with the trend observed in AIMD simulations, with
values 0.32 and 2.39, respectively.9 The deciencies of implicit
solvation models in describing these stabilizing hydrogen
bonding interactions are therefore especially prominent for
OH*, leading to its understabilization. On the other hand, for
CO* is overstabilized since implicit solvation failed to account
for the endothermic displacement of adsorbed water molecules
from the surface: CO* displaces ∼1.2 water molecules from the
surface, whereas OH* displaces only ∼0.3 water molecules
(Fig. 6b), where we dene the number of displaced water
molecules as the difference in the number of adsorbed water
molecules on the clean surface versus that of the surface with
the adsorbate. Although both adsorbates are of similar size,
OH* displaces less water as it attracts water to the surface via
hydrogen bonding. Besides the two main factors above, elec-
tronic effects also potentially inuence the binding energies:
the adsorption of water leads to signicant charge buildup in
the region between the water molecules and the metal
surface.77,79 This creates a signicant dipole interface that
changes the work function of the metal surface80 and can
interact with adsorbates.

Lastly, we studied if the binding site preferences of CO* and
OH* are altered in the presence of explicit solvent as compared
with implicit solvent. Interestingly, we noticed a drastic change
in the preferred binding sites of OH* in explicit solvation as
compared to implicit solvation or vacuum simulations (Fig. 7c).
8346 | Chem. Sci., 2023, 14, 8338–8354
OH* occupies three-fold hollow sites (fcc and hcp) ∼80% of the
time in implicit solvent and vacuum. In explicit solvent,
however, OH* occupies top sites 82% of the time, bridge sites
∼17% of the time, and hollow sites less than 1% of the time.
This is because H2O tends to form hexagonal water structures
on Cu(111) (Fig. S8†). When OH* binds on top sites, it can
maximize its participation in these hexagonal water structures
(Fig. 7d). Such congurations are ∼0.5 eV more energetically
favorable than OH* binding on bridge or hollow sites with
disrupted hexagonal water structures (Fig. 7e), whereas in
vacuum where the top site is 0.45 eV more unstable than the
hollow site (Table S25†). We note such stabilized OH* + H2O
hexagonal water structures have also been observed on
Ru(0001).81

For CO*, the lack of hydrogen bonding results in very similar
results for all simulations, with occupancies of ∼40% and
∼60% for the bridge and hollow sites. These results reaffirm
that explicit solvation is crucial for accurate modelling of
adsorbates capable of hydrogen bonding.

2.4 Activation energies via metadynamics simulations

Reaction barriers are crucial for understanding the kinetics of
catalytic reactions. Yet, it is highly challenging to obtain accu-
rate barriers in explicitly solvated models particularly since
static transition state calculations such as the nudged elastic
band (NEB)82 method do not account for dynamic effects such
as the formation and rearrangement of solvation shells at the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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transition state.83 Free energy barriers in explicit solvents are
therefore commonly evaluated by thermodynamic integration
(TI)84 or enhanced sampling methods such as metadynamics,85

which can more thoroughly sample the changes in solvent
congurations as reactions proceed.

Demonstrating the ability of MLaMD to model complex
catalytic reactions, we performed MLaMD-based metadynamics
simulations to calculate the free energy barriers for breaking of
the C–H bond of ethylene glycol (EG) over Cu(111) and Pd(111).
The C–H and C–Cu bond distances (Fig. 8a) were used as the
collective variables (CVs) to map out the 2D free energy surfaces
(FESs) for C–H bond breaking (Fig. 8b). On Cu(111), the
minimum energy pathway rst involves EG approaching the
surface, as shown by the shorting of d(C–Cu) from 3.2 to 2.0 Å
(Fig. 8b; le). This process involves a small barrier of 0.40 eV.
Once close to the surface, the C–H bond of EG then breaks with
d(C–H) increasing from 1.2 to 2.5 Å; the transition state occurs
at a d(C–H) of 1.8 Å. This elementary step has an overall barrier
of 1.28 eV with respect to the initial state. On Pd(111), however,
C–H bond breaking occurs in a single step together with the
approach of EG to the surface, with a barrier of 0.93 eV (Fig. 8b;
right).

The barriers from our MLaMD-based metadynamics simu-
lations are similar to the barriers of 1.06 and 0.74 eV (ref. 86)
obtained from the potential of mean force (PMF) mapped by the
eSMS quantum mechanical/molecular mechanical (QM/MM)
model by Heyden and coworkers.10,87 Note that ref. 86
employed the PBE functional whereas the RPBE-D3 functional
was used in this work, which may have contributed to the
Fig. 8 MLaMD-based metadynamics simulations of C–H bond breaking
the simulation setup for Cu(111); ethylene glycol and the surface are repr
The two collective variables, d(C–H) and d(C–Cu), are marked. Color co
energy surface for the C–H bond breaking of ethylene glycol over Cu(1
denotes their energies. Solid black circles mark minima.

© 2023 The Author(s). Published by the Royal Society of Chemistry
discrepancies observed. More importantly, however, the trends
predicted by the two methods are consistent: C–H bond
breaking is predicted to be more facile over Pd(111) than over
Cu(111). Additionally, bothmethods predict a similar difference
in the barriers over the two surfaces of 0.35 eV (this work) and
0.32 eV (ref. 86). These results underscore the ability of MLaMD
simulations to effectively model chemically complex bond-
breaking reactions.
3. Discussion

Our results demonstrate that combining active learning with
MLIPs can greatly accelerate computationally costly AIMD
simulations and are therefore an efficient yet accurate method
for modelling the explicit solvation of heterogeneous catalytic
systems. Validating our MLaMD simulations with ab initio
calculations, we demonstrated low energy and force MAEs of∼1
meV per atom and 0.06 eV per Å, respectively. To verify if our
methods are applicable to a broad range of adsorbates and
more complex surfaces, we performed additional simulations of
5 adsorbates—CO*, COH*, HCO*, OCCHO*, and OH*—over
the Cu(211) surface, revealing similarly low errors (Section S3†).

We also nd generally good agreement with the literature in
terms of predicted binding energies, free energy barriers, and
geometric features such as the number of hydrogen bonds
formed between the adsorbate and the solvent. Yet importantly,
the binding energies of certain adsorbates capable of hydrogen
bonding, such as OH*/Cu(111), differed from that predicted by
AIMD simulations in the literature by ∼0.3 eV. As these
of ethylene glycol over Cu(111) and Pd(111). (a) Atomistic illustration of
esented by spheres whereas water molecules are represented by lines.
de for atoms: brown – Cu, grey – C, red – O, white – H. (b) 2D free
11) and Pd(111). Red dotted circles mark transition states and red text

Chem. Sci., 2023, 14, 8338–8354 | 8347
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deviations are larger than the ab initio errors of our simulations
(∼1 meV per atom, ∼0.14 eV per conguration), we suggest that
these discrepancies are likely due to the shorter timescales of
AIMD simulations (<100 ps) widely used. Overall, these results
indicate that MLIPs can handle the complex chemical envi-
ronments of solvated adsorbates on metal surfaces with high
accuracy, generalizability, and transferability. Important for
practical applications, they are also able to treat the breaking
and formation of chemical bonds, which until now has been
challenging for traditional force elds.

The low cost of MLaMD simulations enable better sampling
of the congurational space via extended timescale simulations
and reducing the cost of more replicas. This is especially
signicant given our ndings that the nature of the adsorbate
inuences the amount of sampling needed to achieve energetic
convergence. For these adsorbates, such as OH*, longer
MLaMD simulations will be vital for ensuring converged ener-
getics, as evidenced by MLaMD simulations predicting 0.34 eV
more stable binding for OH*/Cu(111) than AIMD simulations.

Naturally, the choice of MLIP will play a signicant role in
determining the accuracy and success of MLaMD simulations.
Out of the three MLIPs we tested—ANI, Schnet, and MTP—MTP
performed best with energetic and force errors 4–7 times
smaller than ANI and Schnet. The high accuracy of MTP is likely
because of its simpler mathematical form, which prevents
overtting of the relatively small training datasets (∼500–1000
datapoints) generated during the MLaMD simulations. While
having larger datasets can lead to better tting of NN-type
potentials, it also increases the time needed for retraining the
model when new data arrives, which can eventually become
a signicant overhead. To reduce this training overhead, it will
be interesting explore the use of incremental learning
methods,88 which can incorporate new data into a model
without forgetting old data.

However, the main limitations of MLaMD simulations pertain
to modelling systems containing charged species such as elec-
trolytes: these limitations stem from the inability of most MLIPs
to treat systems with long-range electrostatic interactions,89

especially in solvents with low dielectric constants where there is
weak charge shielding. Most current MLIPs work by nger-
printing structures using cutoff radii that are typically no larger
a few coordination shells (∼5 Å).89 They are therefore unable to
capture any interactions longer than this cutoff radius. Fortu-
nately, much research is ongoing to improve the accuracy and
generalizability of MLIPs, with much effort aimed at developing
MLIPs that can handle long range interactions.90–94 For example,
the equivariant NequIP95 and MACE96 potentials are based on
message passing neural networks (MPNNs),97 which by the
nature of their architecture, could incorporate information from
atoms beyond the neighbor cutoff. Long-range interactions may
also be handled by explicitly including charges in the training
process, as demonstrated by the 4G-HDNNPs (high-dimensional
neural network potentials) developed by Behler et al.98 In the
future, it will be exciting to see how these state-of-the-art MLIPs
can help further improve the speed and accuracy of MLaMD
simulations and address challenging chemical problems realis-
tically within the constraints of computational resources.
8348 | Chem. Sci., 2023, 14, 8338–8354
4. Conclusions

Explicit solvent models are the gold standard for modelling
solvent effects in catalysis as they are able to capture key
solvation phenomena such as hydrogen bonding and competi-
tive water adsorption. Despite the wide use of solvents in
catalysis and the highly inuential roles that they play, our
understanding of solvation phenomena remains poor, having
been long stymied by the prohibitive computational cost of
explicit solvent calculations. In this work, we combined MLIPs
together with an active learning framework to accelerate AIMD
simulations of explicitly solvated heterogeneous catalysts by
more than 4 orders of magnitude and demonstrated the ability
of these ML-accelerated simulations to accurately predict
quantities of catalytic relevance, such as adsorption energies
and reaction barriers, in these solvated environments.

By enabling explicit solvent simulations at an affordable
computational cost, MLaMD simulations ll a critical gap in the
realistic modelling of heterogeneous catalysts. Such simula-
tions cannot be fully replaced by low-cost PCM-type implicit
solvent models, which may predict erroneous binding energies
and adsorption site preferences. This is especially true for
adsorbates capable of hydrogen bonding, as we showed for the
adsorption of OH* on Cu surfaces. Neither can they be replaced
by AIMD simulations, as the timescales required for energetic
convergence depends on the mobility of water, which may be
slowed by adsorbates are capable of hydrogen bonding, such as
OH*. For such systems, simulations much longer than acces-
sible by AIMD simulations may be required.

Furthermore, compared with traditional force elds,
MLaMD simulations are more generalizable and transferable:
despite the vastly different chemical properties of bulk water
and transition metal surfaces, we showed that MLaMD simu-
lations were still able to reproduce the metal–water interface
with high delity. The ability of MLaMD simulations to model
the breaking and formation of bonds via metadynamics, as
demonstrated by the example reaction of C–H bond scission of
ethylene glycol over the (111) facets of Pd and Cu, is also
a signicant improvement compared with force elds, which
are typically unable to handle reactions.

As MLIPs with higher accuracy and speed are continuously
being developed, we expect MLaMD simulations to be able to
handle increasingly more complex and larger systems. This will
open avenues for probing a variety of interesting catalytic
phenomena occurring at longer time and length scales, such as
nanoconned solvents. Although more work is still needed to
better handle charged species due to their long ranged electrostatic
interactions, we envision that MLaMD simulations can eventually
become a general tool in the computational chemist's toolbox,
helping to shed light onto the relatively unexplored and exciting
realm of solvent effects for a wide range of different chemistries.

5. Methods
5.1 First-principles density functional theory calculations

We performed periodic, plane-wave calculations with the
Vienna ab initio Simulation Package (VASP).99,100 Valence
© 2023 The Author(s). Published by the Royal Society of Chemistry
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electronic states were expanded with a plane-wave basis set with
an energy cutoff of 400 eV, except for bulk water where a cutoff
of 800 eV was used to minimize Pulay stresses; this is consistent
with the higher energetic cutoffs used for bulk water in litera-
ture.101,102 Core electronic states were represented with projector
augmented-wave (PAW) pseudopotentials.103,104 The Hammer
et al. revision of the Perdew–Burke–Ernzerhof functional
(RPBE)105 was employed to account for exchange and correlation
effects, together with Grimme's D3 method to account for
dispersion effects.106 RPBE-D3 was selected as it accurately
describes both the geometrical properties of liquid water107 and
the chemisorption of atoms andmolecules on metal surfaces.105

Cu and Pd catalyst systems were modelled by ve-layer (111)
slabs with a 3 × 3 unit cell. The bottom two layers were xed at
their optimized bulk lattice constants of 3.57 Å for Cu and 3.91 Å
for Pd (experimental:108 3.61 and 3.89 Å, respectively) and the
top three layers were relaxed. The Brillouin zone was sampled by
a Generalized Regular grid with 8 irreducible and 49 reducible k-
points, as generated by the autoGR package.109 Convergence of
adsorption energies with respect to the k-points grid was
conrmed. Gaussian smearing with a smearing width of 0.1 eV
was applied on the Fermi surface to accelerate electronic
convergence. The Fermi temperature was extrapolated to 0 K to
obtain the nal energies.

For explicitly solvated systems, 32H2O molecules were added
on top of the slabs, giving a ∼20 Å thick water lm, which is
adequate for converging the electronic and geometric proper-
ties of the solid–liquid interface.9,45 To avoid spurious interac-
tions between periodic images, we ensured at least 10 Å of
vacuum in the z-direction, similar to themodels by Groß and co-
workers.76,80 Bulk water was modelled by a cubic unit cell with
60, 100, or 200H2O molecules.
5.2 Adsorption properties from MLaMD simulations

The binding energies of an adsorbate on Cu surfaces, Eads, were
dened with respect to the clean slab, gas-phase H2, H2O, and
CO:

DEads = Eads,tot − Eslab,tot − (xECO(g) + yEH2(g)
+ zEH2O(g)), (1)

where Eads,tot is the total energy of the adsorbate + slab system,
Eslab,tot is the total energy of the clean slab, ECO(g), EH2(g) and
EH2O(g) are the gas-phase total energies of CO, H2, and H2O,
respectively, and x, y, and z are the number of CO, H2, and H2O
molecules, respectively, that are required to form the adsorbate.
All energies are time-averaged internal energies (i.e., the sum of
the potential and kinetic energy). The energies of gas-phase

species include a correction of
3
2
kBT since the centre of mass

motion of the gas-phase molecule is not included in the MD
simulations.9 More positive (negative) binding energies indicate
weaker (stronger) binding of the adsorbate.

Time-averaged internal energies were obtained from
MLaMD simulations unless otherwise stated. The NVT
ensemble was sampled with a Nosé–Hoover110,111 thermostat, as
implemented in the Atomic Simulation Environment (ASE),112

with timesteps of 1 fs. The hydrogen mass was adjusted to 3
© 2023 The Author(s). Published by the Royal Society of Chemistry
amu to increase the stability of the simulation.113 To facilitate
data analysis, we stored the trajectories of the simulations at
every 10 timesteps.

Our workow to obtain binding energies was conducted in
two phases (Fig. S6a†). In the rst phase, equilibration MLaMD
simulations were performed with an initial temperature 450 K,
which was ramped down to 100 K in 5 × 105 steps (500 ps). This
populates the database with diverse congurations, preventing
overtting of the MLIP. 8 equilibration replicas were run in
parallel, each with different initial solvent congurations but
sharing the same trained MLIP. All replicas contribute to the
active learning of the MLIP, helping to further accelerate the
simulation. We term these 8 replicas a single MLaMD bundle as
the replicas are not strictly independent runs as they depend on
the same potential. To further improve the diversity of the
congurations in the training dataset, we ran two equilibration
MLaMD bundles.

In the second phase, the two datasets generated from the
equilibration MLaMD bundles were combined to populate the
training database for the production MLaMD bundle. Only one
production MLaMD bundle with 8 replicas was run. Initial
congurations were obtained by taking the last image from the
replicas of one of the equilibration bundles. The production
simulations were run at 300 K for 5 × 105 steps (500 ps), which
was enough to ensure the convergence of the simulations
(Fig. S7†). For the calculation of all properties, the rst 10 ps of the
production run were discarded to allow equilibration to 300 K.

The above workow was repeated at least three times, each
time with independently trained potentials and different initial
solvent congurations, to obtain better statistics. Throughout
the MLaMD simulations, the absolute energetic errors of the
DFT calculations were consistently below 4 meV per atom
(Fig. 2b and S4†).

Besides energetics, the obtained trajectories were also used
to analyze how adsorbates bind to the surface via calculating
how oen they occupy each site on the catalyst surface.
Specically, we rst enumerated all possible surface sites using
the Catkit package.114 We then matched the position of the
adsorbate at each image of the trajectory to the closest surface
site. The time-averaged site occupancy across the simulation
was taken.
5.3 Free energy surfaces from MLaMD-based metadynamics
simulations

Well-tempered metadynamics calculations were performed with
the PLUMED library115,116 and ASE.112 A hill height of 0.1 eV was
chosen with a width of 0.2 Å. Hills were deposited every 100 steps,
where each step was taken with a 1 fs timesteps. The workow for
calculating free energy surfaces from metadynamics simulations
consists of three stages (Fig. S6b†). First, similar to the binding
energy calculations, two separate equilibration bundles with 8
replicas each were created. For each replica, a normal MLaMD
simulation sampling the NVT ensemble was run with an initial
temperature of 450 K, which was ramped down to 100 K in 5 ×

105 steps (500 ps). Next, the two equilibration bundles were
combined for a second equilibration run with normal MLaMD
Chem. Sci., 2023, 14, 8338–8354 | 8349
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simulations at the chosen reaction temperature, 423 K, for 5 ×

105 steps (500 ps). Lastly, a production MLaMD-based metady-
namics simulation was run at 423 K with 1 × 106 steps (1000 ps)
using the nal congurations of the second equilibration runs as
the initial state.

Data availability

Data supporting the manuscript are provided in the ESI,
including the methods for generating the datasets, details of
hyperparameter tuning of the machine learning interatomic
potentials, evaluation of the accuracy of the trained machine
learning potentials, and energetic trajectories of the simula-
tions. Additional relevant data are available from the corre-
sponding authors upon reasonable request.
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