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Nanoparticles (NPs) interact within organisms via various
biochemical interactions which can bring benefits to society.
Classically, fate/distribution of substances is assessed via phase
(octanol-water) based partitioning. A decade ago, Praetorius
famously stated that phase-based partitioning for NPs is “a road
to nowhere”. While (in vivo) experiments are cumbersome,
reliable partitioning values are of utmost importance given a
wealth of medicinal/toxicological and environmental exposure
assessments. In this communication, we describe calculus for
distribution in human tissues. We applied surface free energy
components for NPs, cell membranes/vesicles, plasma and
protein describing (van de Waals and Lewis acid-base)
interactions amongst tissue and blood constituents. We
considered neutral and charged NPs, and various tissues for
statistical evaluation. Comparison to experiments showed that
predictions are acceptable (R?> > 0.7). Depending on surface
functionality, phagocyte-rich and cancerous tissues accumulate
NPs distinctly from ‘normal’ tissue, via e.g., receptor (lectin/
cadherin) binding. Our modeling study aids and supplements
experiments to quantify the interactions, tissues concentrations
and transport of NPs with(in) organs, to unravel mechanisms of
human exposures. It provides a reference for partitioning to
benchmark upcoming medical applications (e.g., PBPK) and
human/ecological risk assessments, enabling experimentalists
more efficient monitoring, data interpretation, and reduces cost/
time-intensive medicinal and toxicological campaigns.

1. Introduction

Nanoparticles (NPs)"* have a wide range of applications in
chemical industry and in medicine.>* NPs are, e.g., used
therapeutically to target tumor cells. NPs however, also come
with environmental risks™® depending on non-targeted
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Environmental significance

Current study in our research group deals with the prediction of
distribution of nanoparticles in humans. This is crucial, but not adequately
covered by current fate models. In this study surface-driven models
were developed capable of predicting partitioning of structurally diverse
nanoparticles. The developed models can be wused to predict
distribution in various tissues. The methods developed in our study
are the first of its kind that allow for robust predictions that were not
possible previously. We believe Environmental Science: Nano readers will
benefit from the results outlined in this study as it aids their further
research and policy decisions.

biochemical interactions.”® As NPs come in different
materials and sizes, quantifying the impact of surface
coating’/functionalization on NPs cellular transport has
important implications in toxicology.

For decades, fate and accumulation of small organic
compounds have been benchmarked using phase-behavior/
partitioning.’® Oil-water'™'*> and octanol-water partition
coefficient (K,y) have been used to predict NP accumulation/
transformation in environments’®'* and organisms.'®"
However, NPs interact with bio-membrane surfaces,'®
preventing dispersion.'”'® Interactions between NPs and
biological matrices are difficult to characterize due to
adsorption and (irreversible) agglomeration.

Pauli, markedly said, “God made the bulk; the surface was
invented by the devil”.'® In a bulk phase, elements are
surrounded by other similar elements. Surface elements
interact either with elements from the same surface, or with
elements located just below, above or beyond it. Therefore,
properties of a phase and its energies differ depending upon
location, making phase-partitioning inadequate to describe
exposure. As NP interactions are surface-driven, Praetorius
stated that “assessing NP fate via K, is a road to nowhere”."”

Fully empirical (ie., ‘black box’)** methods, evaluate
cellular equilibria of NPs without regard for mechanism and
have confined applicability due to lack of understanding.
Instead, mechanistic insights are needed to describe NP-
biological interactions semi-empirically. Current semi-
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empirical methods*"** apply mechanisms but still have
limited applicability to other exposure regimes.

Interaction with tissue components is at the basis of (NP)
accumulation.>®** Transport of NPs in(to) cells*® depend on
uptake pathway, possible via passive diffusion into/through
the cytoplasm, adhesion to endoplasmic reticulum®® or Golgi
apparatus®” to be encapsulated by membranes and
vesicles,”®>° (e.g,, non-endocytic pathways for red blood
cells®’). NP can agglomerate in vesicles, to be excreted by
cells.>® NPs transport and accumulation (agglomeration) in/to
lysosomes'’  enables acid-catalyzed ~degradation,”**?*%
altering their surfaces.**

Transport by vesicles®® drives NP exo/endocytosis. Upon
cytosis, cell membranes and vesicles deform to fuse and
release/trap NPs.’® Therefore, past research predicted
transport based on membrane energies like crossing,
deformation,**® encapsulation and combination.>® Recent
work®® linked NP properties to traits of cells to assess
interaction energy and predict cellular uptake and
elimination. Properties of NPs, e.g., charge (density*') and
cell traits influence NP transport, but it remains difficult to
characterize binding to vesicles. Identifying the probability/
frequency of binding and transport®” enable assessing NP
exposure.

Relationships between surface physico-chemical properties
and cell behavior at the interface have been
hypothesized.***® We specify this hypothesis by considering
NP properties and tissue/cells traits to assess partitioning in
organs, Fig. 1. In this communication, we quantify exposure
by using interaction energies between NPs and membranes.
We consider the fraction/frequency of NPs bound/
encapsulated by/in organ(elles). We focus on polar (Lewis
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acid-base) and Van de Waals forces. We assessed our model
with experimental data for various tissues and explored the
effect of NP properties on partitioning.

2. Methods

2.1. Tissue compositions

Tissue partitioning (K) is affected by the amount of
membrane in a cell, and how many cells of a type an organ
tissue contains. E.g.,, cancerous cells express enhanced
intracellular signaling via vesicles.*®*>> As the concentration
of cells and their membranes is to NP
concentration, we take that sorption is linear in NP
concentration, and that K is a summation function over
Boltzmann partitioning (e *%*’) among cell types (i),
weighted by their proportion in the tissue:

. ai(m S VIO
tissue/blood T [tOti}

in excess

We take proportions of cell types from Table 1. We calculate
binding energy changes AG; from surface energies y, section
2.3. Apart from membranes, proteins influence distribution
of NPs. We take serum protein concentration independent of
tissue type (equal among capillary bloods), and describe its
influence in section 2.2. Knowing how much water organs
contain, we extrapolate e ACusuermaen/RT o e AGtmnmarey/RT)
Table 1.

2.2. Membrane-protein-water partitioning

We calculate K; via Boltzmann, via AG: values for free
energy of binding. Fig. 1 depicts the influence of G
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Fig. 1 Example distribution of NPs throughout/around tissues, influenced by energy G. Plasma = extracellular serum (saline water + protein).

k
Difference between dividing beams (barriers) are AG = AG},, - AGky, ie., K = kﬂ denotes equilibrium which is attained after long-term exposure.

Intracellular vesicle-free NPs exist.*” Low G means high NP concentration: [NP] across compartments i (horizontal) [NP];/[NPlita = € 2%

depending on properties, accumulation in phagocytes/lysosomes.
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Table 1 Simple representative composition (%) of healthy human organ tissues by generic celltype. Colors denote dominant contribution to energy (red
= hydrophobic, blue = Lewis basic, green = Lewis acidic). We combined compositions with surface energy data (Table 2). Membrane types have varying

degrees of immunological (Fig. 1) relevance®*7°

Membrane Liver | Bone; | Skin | Spleen® Adipos | Tumor | Mucus | Blood Lymph | Brain barrier’ | Lung; kidney;
cell type i spine e testis barrier heart
Keratinocytes, % | 0 0 59 0 0 0 0 0 0 0 0
Epith/endoth, % 5 1 40 5 0 0 0 0 100 99
Hepatocytes, % 70 0 0 0 0 0 0 0 0 0 0
Osteocytes, % 0 98 0 0 0 0 0 0 0 0 0
Phagocytes,® % 25 1 1 25 0 0 0 0.1 100 0 1
Lipocytes, % 0 0 0 0 100 0 0 0 0 0
Cancerous, % 0 0 0 0 0 100 0 0 0 0 0
Erythrocytes, % 0 0 0 70 0 0 0 99.9 0 0 0

Mucous cell, % 0 0 0 0 0 0 100 0 0 0 0

Total, % 100 100 100 100 100 100 100 100 100 100 100
Water, % (ref. 53) | 72 31; 69 64 75 21 80 98 90 96 70 83; 82; 75
References 54-61 | 61-64 61 61,65-68 | — — 69 61,70 61 — 61

“ Representative functional cell;  excluding bone marrow; ¢ assuming the majority of immunological cells is phagocytosic, ¢ BBB consists of
tightly packed endothelial cells.  White pulp (25% of splenictissue) structurally similar to lymph.”"

(vertical) across different surfaces/compartments
(horizontal). The lower G, the higher the partitioning
therein/on. The ability of NPs to partition onto membranes
depend on their bio-availability, ie., interaction with
endemic serum proteins,**”>”®  Fig. 1. We
partitioning of NPs between water (w) and membranes (m)
as function of serum plasma protein coating in two

additive terms:

define

~AGmembr(i) /water e “AGwater—membr(serum) /RT (2)
e RT =
(1 + e ~BGserum-water(np) /RT)

e ~AGyater—membr(np) /RT

(1 —+ a.e'AGwater«serum(NP)/RT)

where we take that a NP is either covered or uncovered by

serum proteins (p), analogous to small organic molecules.

o is a dimensionless frequency of NP-encounters,

proportional to plasma protein amount (7%); inversely

proportional to the NPs (surface area) acting as a plasma
0.07

(o)
temp.

Serum contains 60-80 g L' plasma protein (35-50 g
L' albumin), with MW of ~150 kg mol™", thus (70/

protein scavenger, a = RT is gas constant;
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150000) x 6.02 x 10> = 2.8 x 10°° proteins per L (size
dseram = 6 nm), of which (1000/(6 x 6) = ) 28 can adsorb
on 1000 nm> NP surface. Thus, protein concentration is
in excess to NPs dosing concentration [NP] in any
practical scenario (10°-10" NPs L' (ref. 74)). We thus
disregard NP homo-/heteroaggregation/agglomeration,
taking o = 0.07.

2.3. Free energy changes

We obtained different binding free energy changes AG via:

AGyater— membrane(serum)

— B LW
- A'(y?eruln—plasma—membr + yserum—plasma—membr)

_ AB LW
AGwaterﬂmembrane(NP) - A'(yNP—plasma—membr + }’NP—plasma—membr)

_ AB LW
AGwater—»serum(NP) - A'(VNP—plasma—protein + VNP—plasma—serum)
— B LW
AGserumawater(NP) - _A'(VII}IP—plasma—serum + VNP—plasma—serum] (3)
In ‘classical phase partitioning” (for small organic

compounds) A is the solvent accessible molecular surface

This journal is © The Royal Society of Chemistry 2023
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area. NP partitioning is geometry-driven;”> we assume only  cells have enhanced metabolism over ‘tranquil’/‘sluggish’,
partial wrapping of surface area (e.g., bending/deformation  e.g., endothelial cells.””*%%%°

negligible to AB/LW forces or compensated by receptor- Via abnormal metabolism cancer cells produce e.g., lactate
ligand binding”®) estimating the interaction area (m®) A from  acidifying tissues,'®" affecting bio-adsorption.'>'*® Metastatic
molar volume”” (here, the ethylene glycol monomer of PEG).  cancer cells migrate/proliferate to tissues via the blood,"**"*>
We involved Vande Waals (LW)/polar Lewis acid-base (AB)  depending on hydrophilicity (i.e., y*®). Cells contain many

forces*®’® taking distances in equilibrium by born repulsion,  surfaces: Golgi apparatus/vesicles/lysosomes/endoplasmic
0.157 nm.”® reticulum. Liver macrophages internalize NPs'**'°® and entail
We calculated y*® and y"" (m] m™) from effective surface  acid-rich lysosomes, attacking particles."*''® pH can alter/

energy components ™, y* and y~ (electron acceptor and  affect surface activity, tension (y)''* and ‘biocollisions’."**
donor) for each species: NPs, membranes, serum plasma Membranes thereby differ in characteristic ‘surface
protein and water; details in ref. 78 and 79, substantiated by  acidity’,'"® analogous to pK,/pH functionalities among

multiple cell lines (macrophage, endothelial cancer, organic compounds (pK,'s on surfaces).''* We characterize

fibroblast, etc.).*”®" We take fOr Jproteins Vproteins Vprowein Of  cell membrane type by energy of surfaces y. Adipocytes
serum protein 0.002, 20, and 41 mJ m?, taken to resemble  contain more lipid (with specific ).*>''® Table 2 lists
dry albumin at PH 7779782 and for y;lasmar y;lasmay y;}g/sma of y:-nembraney y;nembraney ylr‘;xvt‘e/mbrane values that we used to
plasma 25.5, 25.5 and 21.8, mJ m >, taken to resemble water. effectuate  aforementioned factors, substantiated by
For NP yp, Yxp, VKb We took 0, 45, and 43 m] m ™2, taken to be  relationships between phagocytosis/contact angle (i.e., y).**
polyethylene glycol.

2.5. Testing using experimental tissue partitioning.

2.4. Cell membrane types We evaluate accuracies of K from eqn (1)-(3) by comparison

While carbohydrate contents in membrane surfaces do not  with experimentally-derived K from in vivo concentration
(greatly) differ between cell types,®*™®” differentiation involves  data™*'** (open literature). We neglect biotransformation,
glycosylation:*®*°®  phagocyte have glycosylated protein  and disregard elimination via faeces/urine. We focus on large
receptors (lectins””") with binding motifs specific to (B-)  exposure times t, e.g., months,"** so organs continuously take
glucan-chitin copolymers®>°* recognizing foreign particles.  in/eliminate NPs (4, 13, 100 nm, coated with PEG) with equal
Liver (Kupffer)®>*>°® and cancer cell®’”®® membranes are rates. By analogy, barriers in Fig. 1 are sufficiently low. Then,
lectin-rich. Immunological (mucus/phagocytic/cancerous)  dividing uptake and elimination gives K for organ tissues:

Table 2 Energy components of membrane surfaces in cell types (mJ m). Ranges are variabilities across exp. setups. Colors denote dominant
contribution to y (red = hydrophobic, blue = basic polar, green = acidic polar). Octanol is a reference to phase partitioning**+*6-13!

Membrane biomaterial type i y;}:nbme Ve e [ References
Keratinocyte” 32-36 0.0-1.3 7.5-14.5 116, 117
Epith/endoth® 37.6 0.00-1.05 59.6-76.7 118, 119
Hepatocyte® 39 0.00-1.05 54 120
Osteocyte! 42 0.2-0.3 39.1-60.6 121-124
Phagocyte®’ 28-30 5.3-7.7 18-23 44
Lipocyte 24.0-27.1 0 0 125-127
Cancerous’® 36.0 1.23-1.70 50.9-53.7 118
Erythrocyte 35.2 0.01 46.2 128
Mucin/mucus 37.26/6.92 | 3.19/49.17 | 9.55/7.84 129, 130
Octanol 27.5 0 18.0 131

“ Values represent untreated keratinous skin, keratin <85% of differentiated keratinocytes.’*? * Human endothelial cellline HUVEC. ¢ Values
unknown, y™" taken for a generic cell,’*** 5" taken as range for non-immune cells, 7~ taken corresponding to maximum binding.'*® ¢ For
bone/osteocytes, membranes surface reflects hydroxyapatite, values represent untreated (hydrophilic) hydroxyapatite (>70% crystalline) and
collagen. ¢ Phagocytic cell lines THP-1, HL-60./ Local tissue/organelle pH enhances y: linear/exponential extrapolations®*'° imply y* = 1.2-6.0
mJ m ">, substantiating values reported. ¢ Breast cancer cell line MCF-7.
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assuming that experiments reflect equilibrium. Section 4.2-
4.4 discusses accuracy of the assumption.

3. Results

3.1. Interaction between NPs, membranes and serum

Table 2 shows energies for interaction between PEG-NPs and
membrane biomaterial membrane surfaces (y and AG).
Interaction energies are either positive or negative. The larger
the hydrophobicity and Lewis acidic character of the
membrane, the more negative the energy values for
interaction. The AG did not differ between differently sized
PEG-NPs (4-100 nm) as the PEG coating groups are similarly
sized.

The AGyp range from —4.4 to +5.1 kJ mol ™', which is an
energy range of 9.5 k] mol™". If AGapumin Were taken into
account also, the summed AG is a range of —11.5 to +7.8 kJ
mol . This shows that albumin has a differentiating effect
on cell type. Based on these values, via eqn (1)-(3), ratios
were calculated for partitioning of PEG-NPs between serum
and membranes. Predicted K was highest for non-polar
lipocyte surfaces, and lowest for endothelial/epithelial cells.
Again, the larger the hydrophobicity/Lewis acidic character of
the membrane surface, the larger the predicted K.

3.2. Partitioning of NPs in organ tissues

Experimentally derived (eqn (4)) Kiissue/blooda fOr PEG-NPs
range from 0.044 to 2600;'** these K's are independent of
time within 7 days to 6 months. Other data for starch/dextran
coated NPs'* and eqn (4) imply a 3 day apparent tissue/
blood/K is =7 for phagocyte-rich tissues (e.g., liver/spleen);
for phagocyte-poorer tissues, Kissuesplooa = 0.3.">> These
values appear low compared to longer exposure times >7
days-6 months. This indicates absence of equilibrium or
steady state. We did not see a statistically significant effect of
NP size on the Keep, > Fig. 1. Surface functionality does
influence partitioning, with 6 day Kiier/blood > Kspleen/blood fOr
cationic CTAB-NPs, but Kjier/blood < Kspleen/blood fOr neutral
PEG-NPs."**

3.3. Prediction of NP partitioning

Fig. 2 depicts predicted K, eqn (1)-(3) and experimentally
derived K (eqn (4)) for PEG-NP partitioning in different organ
tissues, with reference to blood (Kissue/blood)- FOr 4 nm PEG-
NPS, the Pearson correlation coefficient R*> = 0.69 and p =
0.0004 (2SD). For 13 nm, R* = 0.75, p = 0.0001 (2SD) and for
100 nm R? = 0.70, p = 0.0004 (2SD). For 4, 13 and 100 nm
grouped together, R* = 0.68, p < 0.00001 (2SD). The p values
of these four linear regressions are all lower than 0.05 (SD),
denoting statistically significant relationships. R* values are
all higher than 0.6, which is often considered the minimally
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View Article Online

Environmental Science: Nano

4
—_
3 4 —
= —
g ]
22
= .
a ES
5
5 11
é: H ]ﬂ: |
01 1
=) ]
<2
-1 A 1
o
2 bone  brain__liver lymph

0 0.1 0.2 0.3 0.4 0.5
log{¥ (i/tot,) - e—AGmembr(i)ﬂblood}pmdicted

Fig. 2 Predicted (x-axis, eqn (1)-(3)) vs. experiment-derived
partitioning between organ tissue (Table 1) and blood of PEG-NPs
(Cho et al.'*® data, N = 42, eqn (4)). Circle © = 4 nm, triangle A = 13
nm, square O = 100 nm. Variance between same symbols due to
difference in organ tissue composition (Table 1). Adipose tissue (log
Korea = 1.3) shown as 0.5. Horizontal error bars propagate variabilities
iN Ymembrane (Table 2); vertical error bars are 1SD based on 4 datapoints.
AG in 2.303 RT.

accepted prediction precision for risk
assessment."**

The slope a of the linear regression (i.e., 10g Korgan/bloodsexp
= a-10g Kyreq + b) is approximately 15 + 3 (2SD), significantly
larger than 1. The offset b is -2 + 1 (2SD). Regression fits (R?)
were slightly higher for a log-logistic fit, as compared to a
linear fit. As adipose tissue appears out of domain, it was not
taken into account in regressions. Values for predicted K for
partitioning of PEG-NPs from blood into skin and adipose
tissue were relatively high, >0.4. Values for Kpeq and Ky, for
bone and brain were lowest. We did not observe any apparent
outliers. Though we took data in Fig. 2 from 1 literature
source,'*® other sources*'*”**° show similar trends for
PEG. eqn (1)—(3) correctly predict that albumin adsorption for
cationic NPs is higher than for anionic NPs."**

(environmental)

log Korgan/blood,experimental
— 15(is)‘lOg{Z(i/tOti)'e_AGmembmne“]/blmd}predicted — (2 + 1)

4. Discussion
4.1. Energy considerations

Eqn (1)-(3) have a mechanistic basis. High/low K can be
explained by many experimental phenomena. Cationic NPs
(high y") are cleared from blood (hence, organs) faster than
neutral or anionic NPs,"*” presumably via enhanced binding
to serum protein (high y). Eqn (3) predicts this, which
constitutes a basis for tissue partitioning. Organs rich in
phagocytes show enhanced K; indeed, NPs accumulate in
lymph nodes.'*® Instead of polar headgroups (AB
interaction), NPs may interact with lipid tails (micelle-like

This journal is © The Royal Society of Chemistry 2023
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system, involving differing y (ref. 126 and 141)), as enhancing
concentrations in adipose tissues (Fig. 2).

Across tissues, AG ranges from -4.4 to +5.1 kJ mol™, a
range of 9.5 k] mol ™", equal to around 5-10 hydrogen (H)
bonds. H-bonds need to be broken in order for surface
molecules to interact. This number, ~10 k] mol™, was
associated to the difference between active and passive
uptake mechanisms:"**'** cells with high positive AG
(Table 3) take up PEG-NPs passively; cells with lower AG also
take up PEG-NPs actively. The number of PEG chains on the
(4 nm) NP surface would be ~40,"***° but a limited number
need interact with biomembranes. Molecular initiating
interaction events (MIE) between substance and biomolecule/
system (e.g,, ~7 k] mol™" (ref. 147)) lead to outcome
pathways. The MIE involves a limited/single functional group
on the NP surface.

Though (e.g., lung) tissue contains only ~1% phagocytes,
these contain up to 83% of all (PEG) NPs in tissue.'*® This
implies a NP macrophage/tissue partitioning K = (100/
[pha)])-([NPeoJ/[NPypna] — 1), ie. (100/[1])-([100)/[83] - 1) = 20.
This 20-fold enhancement matches higher receptor
densities'*® and activities'*® of macrophages. Moving 1 mol
of a substance across a 20-fold gradient at 25 °C is AG =
(8.315 J mol™ K )-(298 K)-In(20/1) = 7.4 kJ mol ."*" It is
therefore unlikely that slope = 15, larger than 1 (Fig. 2), stems
from inaccurate y (eqn (1)—(3), Table 2). If our AG is fully
precise and exact, slope (Fig. 2) should be 1 (according to
Boltzmann). The difference between expected (1) and
observed (~15) may relate (partially) to unanticipated
wrapping/bending or (geometry-)specific ligand-receptor
energies’*>*** contributing to 7, not reflected by Table 2,
which may refine K. After phagocytosis, a cell minimizes its
surface tension (y) by smoothening.'*®

View Article Online
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4.2. Cell signaling

Not the full NP surface area interacts with the biomembrane
surface. Indeed, K., does not differ between NP sizes'*’(-
Fig. 2). Log-logistic fits are slightly better than linear fits
between Ky, and Kpreq (levelling off in Fig. 2), implying a
crowding/shielding/saturation. This may refer to interaction
area A (eqn (3)), which varies depending on strength of
interaction (AG). AG depends on polymer size, but
approaches (per monomer unit) zero at higher MW.'**
Chemical potential of an atom/molecule depends on its
surrounding, larger on convex surfaces than on flat surfaces,
in turn larger than under concaves."”” While size/geometry
can affect p,"°®'° interaction with serum/cytoplasmic
constituents and geometric restrictions may offset the effect.
The slope (~15) is thus not a size-effect per se.

The slope (Fig. 2) may entail information on frequency, «
in eqn (2) or i in eqn (1). Under steady state, it implies higher
phagocytic activity. By analogy, in (eco)toxicology, ICs¢/ECsq
values (in log-logistic curves) describe induction of biological
response. Indeed, high (toxic) pressures instigate aggrupation
of phagocytes (granuloma) at sites of NPs (increasing i/tot;
for phagocytes, eqn (1)). We assumed that one NP binds to/
within one vesicle®*'®® ignoring (intracellular) aggregation.*?
This is sometimes not true: spleen phacocytes cluster
(bioconcentrate) PEG-NPs in lysosomes;'*®  Kupffer
macrophages engorge NP-aggregates.'®’ Aggregation changes
the properties of the NP cluster.

A 10-fold increase in the average number of NPs per
lysosome, implies an effective ‘bioconcentration factor’ of 10.
Bioaccumulation (in organisms), rather, involves multiple
uptake steps by different signaling pathways. Detecting
bioactive substances enhances local internal

Table 3 Surface energies changes for adsorption interaction of albumin and PEG-NPs onto membranes biomaterials i, and for sorption of albumin onto
PEG-NPs. Corresponding membrane-serum pattitioning ratio K (egn (2)) also shown. y{ae—2umin = 4 2 mJ m=2

ot e | T | T | MG | MG | e,
: m? mJ m? kJ mol™ kJ mol™! eqn (1)-03) ’
Keratinocyte -26.3 =743 =32 =140 5.0

Epith/endoth 219 +41.2 2.7 5l 0.5

Hepatocyte s Sl il 59 0.7

Osteocyte +8.7 U7/ ARl 1l 35 0.9

Phagocyte —-10.6 +0.3 =3 0.0 2.6

Lipocyte =577/ =357 =l —4.4 23.0

Cancerous 27 +29.6 +1.6 87/ 0.7

Erythrocyte +7.4 W3 +0.9 +3.6 0.9

Mucus =32 5 =145 27/ 4.7
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Fig. 3 Experimental vs. predicted partitioning for 155 biomolecules between water and fullerene Cgq (left) and amino-functionalized SiO, NPs
(right). Experimental values characterize partitioning of NPs onto (within) biomolecules and water. Data from ref. 215. Open symbols are
(incompletely characterized mixtures of large) flexible molecules that minimize energy by molecular reorientation (oligonucleotides, small
proteins). Interaction with Cgo (yow. 7%, 7~ = 25, 2, 17 mJ m™2) via polarization and electron donation; with (cationic) SiO>-NHsz (yw, 7. 7~ = 0, 50,

0.1 mJ m2) via electron accepting.

162-164 94,165)

concentrations. BAFs along (cell signaling
pathways may be ~100 times higher than BCF for the same
substance.'®® Bioaccumulation Kgxr may be described as
KpcrKpcrKper - etc., involving multiple concentrating steps
(after the MIE).

Such steps may involve Ca®', affecting lectin binding
capacity,”"'®>'®” which y (Table 2) not captures. Cancer cells
lack Ca**-dependent cadherin'®*"’® enhancing repulsion.
Saline solutions effectuate different y than pure water’>*%°
(eqn (3)). Amine-binding is key to pathogen detection and
immune response,’”'’* with electron-acceptor/donor
interactions central to lectin binding to chitin ("" = 41, y* =
1.3,y” =17.1 mJ m > (ref. 175)) via the N-acetyl group.'”® Ca**
complexation (bridging) affects its AG."”” "% This explains the
high slope (Fig. 2) because Ca”" is only relevant in those (i.e.,
immunological) tissues.'®" For phagocytes, a decrease by Ca**
in AGgater—membrane from o (Table 3) by a representative 25 kJ
mol ™" (ref. 182 and 183) increases predicted logK for e.g., the
liver to ~2.9, agreeing with experiment (2.4-2.8, Fig. 2).

4.3. Tissue inhomogeneities

Stronger correlations may imply a more homogeneous tissues
or uniform binding mechanism. Inhomogeneities (e.g.,
layering) in tissues affect K (hence, R Fig. 2) via local
increased exposures. Penetration of PEG-NPs through skin
depends on hydration status.”>#*'%5 Mucus epithelial tissue
(mouth/stomach) cells produce (N-)glycosylated proteins'®®
protecting organisms by binding (trapping) foreign
material.'*”**® This explains marked accumulation of NPs in
(Ca**-augmented) mucin (Table 3),"*>'° having distinct y
(Table 1).

We cannot always assume the barriers in Fig. 1 are
sufficiently low; inhibition of transport limits
partitioning.®" Macrophages (microglia) account for 10-15%
of brain cells,"”* and would readily take up NPs."*> However,
the brain's blood vessels are lined with endothelial cells

tissue

430 | Environ. Sci.. Nano, 2023, 10, 424-439

wedged tightly together, creating a boundary. Likewise,
microvascular endothelial cells form the blood-spinal cord
barrier; Sertoli cells constitute the blood-testis barrier. Pores
sizes of ~5 nm may complicate measuring a K in kidney.

We characterized each individual membrane surface (and
serum protein) by a single y set, implying that e.g., vesicles
share the characteristics of cell surfaces, which combine
during cytosis. ymembrane characterizes weighted averages of
membrane components: lipids, receptors/proteins,
counterions, etc. However, generic description of y may not
apply. Inhomogeneity in tissues is apparent from e.g
markedly different y for bile in the liver (y*"V = 23-26, y* = 36~
46,y = 8-15 mJ m "% and y" = 10-13, y~ = 35-41, "V = 25-
27 mJ m > (ref. 194)) and hydroxyapatite (" = 2.2, y* = 19.8,
7~ =73.2 mJ] m > (ref. 195)), differing from Table 2. In reality,
Ymembrane  differs —across cell membranes. Pending
(experimental) data, implementing distributions of ymembrane
for inhomogeneous surfaces renders predictions more
precise.

NP distribution depend on
cellular/tissue compartments, other than in Table
diversity of proteins in biological media'®®'*® may
differentially functionalize NPs (and membranes) affecting
y, but was ignored. Tissue composition (Table 1) may be
dependent on NP concentration, characterizable by healthy/
affected tissues, in terms of phagocytes.’*® Differences in
body/organ weights and composition exist.'®*?°"  We
presume that inter-*** and intraspecies®® differences in
lectin contribute to variance in NP distribution. Human
physiology is not an exact science; assessments need
customization. Standardization helps to benchmark
exposures and tailor assessments.

interaction with (intra)
1,196,197 4

4.4. Outlook and conclusion

Performance of eqn (1)-(3) is appreciable, R> = 0.68, and
statistically significant p < 0.00001 (2SD). In comparison,

This journal is © The Royal Society of Chemistry 2023
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different labs monitoring in vivo concentration routinely yield a
variability scatter of >20-40%."*® Variance in experimental log
K (e.g., 7 days or 6 months) is 20-100% depending on tissue."*?
~70% of white blood cells are phagocytes, hence,
representability of Table 1 entries introduces errors of ~30%.
Whether K reflects equilibrium (section 2.5) is uncertain due to
experimental limits (colloids preventing dispersion). Barriers/
inhomogeneities complicate iz vivo measuring (local
equilibria). K may increase/decrease via size-exclusion or
immune response by aggrupation (clustering) of macrophages.
Uncertain geometry of protein/vesicle/cell/tissue surfaces
impacts y, within 5%.>* Additional experiments on (de/at)
tachment NPs aid assessment of tissue trafficking.

Depending on chemistry,'%20420
autophagosomes®’® degrade ionizable/polarizable NPs,
affecting y, but does not affect model results for inert PEG-
NPs (Fig. 2). y is a function of surface morphology
(shape),'*>2°® but applicability to non-spherical NPs remains
speculation, needing further study. Long-term exposures to
various NPs/coatings (PbO, TiO,, QDs, Cg, citrate®>°°>'%)
show distributions similar to Fig. 2 and values, e.g. Kjiver/blood
~ 10°2" are comparable. Moreover, Fig. 3 ascertains
flexibility of our ‘generic’ model by showing applicability to
other NPs/biomolecules:

Eqn (3) uses y of NP and cell membrane (biomolecules),
either experimental (if available) or predicted (ie.,
computed®’). We used y (ref. 216 and 217) to describe
adhesion of surfaces, avoiding shortcomings of K"
Relationships (Fig. 2) depend on standardizing doses/
exposures and sample processing (tissue-specific digestion/
fixation/drying rates). y (Table 2) is subject to test liquids
(analogous to octanol). Surface energy components (y*%, y*?)
describe small organic compounds (e.g., polar surface area);
cations are electron-poor Lewis acids, anions are electron-
rich Lewis donors. For NP surfaces with limited/uniform
polarizability, we can obtain 8y, ynp and yxp from partial
charged surface area/density.’®®® This unifies descriptions
for NPs and small organic molecules:**® both y for NPs and
charged surface areas of small molecules drive their
partitioning; both find use in risk assessment.?*>1%220

Our calculus for various NP types successfully yields
partitioning in(to) many tissues/organs, by cells'>®" and
biomolecules. These data find use in PBPK modeling with
extensions via scaling.*°>*'*?*' Existing PBPK models
parametrize partitioning without (much) regard for
mechanism:***> higher K in non-phagocytotic organ tissues.**
Ideally, all parameters ought be mechanism-based to allow
extrapolation across NPs/tissues. To our knowledge, a
theoretical framework did not yet exist for tissue partitioning
of NPs. We are happy to attribute complex behaviors to
simple properties and traits and expand concepts for small
molecules to NPs. Regressions between predicted/
experimental K are useful to obtain tissue partitioning
without experiments. We instigated future research for
implementing biodistributions of particles in medical and
toxicological applications.

lysosomes/
26,207

This journal is © The Royal Society of Chemistry 2023
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