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The nuclear pore complex is a nanoscale assembly that achieves shuttle-cargo transport of biomolecules:
a certain cargo molecule can only pass the barrier if it is attached to a shuttle molecule. In this review we
summarize the most important efforts aiming to reproduce this feature in artificial settings. This can be
achieved by solid state nanopores that have been functionalized with the most important proteins found
in the biological system. Alternatively, the nanopores are chemically modified with synthetic polymers.
However, only a few studies have demonstrated a shuttle-cargo transport mechanism and due to cargo
leakage, the selectivity is not comparable to that of the biological system. Other recent approaches are
based on DNA origami, though biomolecule transport has not yet been studied with these. The highest
selectivity has been achieved with macroscopic gels, but they are yet to be scaled down to nano-
dimensions. It is concluded that although several interesting studies exist, we are still far from achieving
selective and efficient artificial shuttle-cargo transport of biomolecules. Besides being of fundamental
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Introduction and scope

Inside the envelope membrane surrounding the cell nucleus
there exists a macromolecular machinery (Fig. 1A) that has
fascinated molecular biologists and biophysicists alike since
long ago. This assembly of multiple proteins, known as nucle-
oporins (Nups), forms the nuclear pore complex (NPC). The
NPC has a total molecular weight as high as 125 Mg mol™"* (in
vertebrates) and is generally well characterized."” The most
central functions of NPCs are to regulate access of proteins to
the interior of the nucleus and to export mRNA. Although small
molecules and ions diffuse freely through the barrier, molecules
larger than ~40 kg mol ' can rarely pass unless they are bound
to a transport protein, which thereby acts as a “shuttle” carrying
a “cargo”. In other words, NPC transport occurs by a shuttle-
cargo mechanism (Fig. 1B) and has quite remarkable selec-
tivity. Artificially introduced cargoes as large as ~39 nm, close to
the inner NPC diameter, can be transported if they carry the
right recognition sequence.® Different shuttle proteins exist as
well as different nuclear localization signals,* ie. protein
domains that bind the cargo to the shuttles.

Importantly, while the movement of the shuttle proteins is
bidirectional, transport of cargo proteins is normally unidirec-
tional (nuclear import) and thus energy consuming. This is
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interest, such a system could be potentially useful in bioanalytical devices.

possible because of specific conjugation to shuttles on one side
of the NPC and release of cargo on the other, all regulated by
sophisticated mechanisms.*® Specifically, the release of cargo
inside the nucleus is associated with irreversible guanosine
triphosphate hydrolysis to guanosine diphosphate and the
transport cycle is completed by additional proteins.” RNA is
exported from the nucleus by similar processes®® and the dys-
regulation of the export proteins and associated receptors has
been linked to cancer.*® However, the NPC construct itself is
a passive barrier that provides facilitated diffusion.”** This
raises the question if one can, perhaps in a relatively simple
manner as no energy input is needed, construct an artificial
system capable of shuttle-cargo transport. In other words, is it
possible, in a synthetic manner, to achieve movement of cargo
biomolecules only when they are bound to a shuttle, which
moves freely through the pore construct? Unidirectionality
could then be implemented in later developments given that the
desired selective barrier properties are established with respect
to the shuttle and cargo. As will be discussed, research has not
yet progressed very far towards this goal and the task is very
challenging both scientifically and technically. However, there
are many reports that achieve important milestones and
provide interesting insights.

Based on decades of research on NPC function, one can
argue that the main reason why transport mechanisms are so
difficult to understand is that the centre channel consists of
Nups with intrinsic disorder," which occupy an average volume
fraction of ~20% throughout the interior. These contain
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Fig. 1 The biological system to be mimicked. (A) Drawing of the NPC
with its main components (adapted with permission from Samir Patel,
personal communication). (B) Principle of unidirectional nuclear
import of proteins via RanGTP. Importin is the “shuttle” and NLS is the
“cargo”. Reproduced with permission (CC BY) from Xylourgidis et al.®

characteristic phenylalanine-glycine (FG) motif repeats, which
together form a barrier with a largely undefined and fluctuating
structure of FG-Nups, although interactions do occur between
the phenylalanines.™ In contrast, the rest of the NPCs have had
the structures of their proteins determined in great detail.?
Many thorough studies have been performed from a biological
starting point (a “top down” approach) in order to deduce more
information about NPC transport. For instance, it is possible to
selectively delete genes for certain FG-Nups, which eventually
leads to failure of the native transport mechanisms and cell
death. Physical tools such as high-speed atomic force
microscopy,”®™” scanning electrochemical microscopy*® and
single molecule fluorescence microscopy®*® have also been used
to directly probe “living” NPCs (often in isolated nuclei). Addi-
tionally, artificially designed constructs (non-proteins) capable
of translocating NPCs in living cells have been demonstrated.*

4926 | Nanoscale Adv, 2022, 4, 4925-4937
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In this review, the broader picture of shuttle-cargo transport
is in focus and the purpose is not necessarily to understand the
NPC specifically. Rather, we want to address the general ques-
tion: to what extent is it possible to achieve shuttle-cargo
transport in a synthetic manner, using “bottom up” strate-
gies? We focus on the physical/chemical picture instead of
living systems. From this perspective, the NPC becomes mostly
a source of inspiration because it shows that shuttle-cargo
transport is indeed possible. Furthermore, we note the many
interesting predictions from theoretical studies, which have
addressed the NPC specifically” as well as the more general topic
of disordered grafted macromolecules in nanopore geome-
tries.”* Selected studies will be referred to, but our aim is not to
cover all theoretical work. Instead, focus is on experimental
research that attempts to construct functioning artificial
transport systems.

It should be noted that chemically modified solid state
nanopores have been reviewed previously on several occa-
sions.?”? Our goal is to dig further into NPC mimics specifically
and the challenges associated with achieving shuttle-cargo
transport. Systems that exhibit active gating mechanisms, i.e.
pores that are either open or closed, may be relevant but are not
the main focus as this is a quite different concept. Furthermore,
purely size-selective systems such as unmodified porous
membranes will be ignored since our interest lies with systems
where the chemical modifications provide selectivity. In fact,
even chemically modified nanopores may be irrelevant for this
review if they are not functionalized with molecules that exhibit
intrinsic disorder like FG-Nups, ie. the grafted molecules
should be some form of reasonably long polymeric chains. (To
be precise, the contour length should be much larger than the
persistence length.) For instance, a thin and dense organic
coating may effectively reduce the diameter of a nanopore and
thereby influence how large molecules can translocate,* but
such systems do not provide a transport mechanism with
chemical selectivity. Furthermore, we do not cover the topic of
very small pores (<10 nm) such as nanotubes etc. as these are
often attempts to mimic selective ion permeability*****® rather
than macromolecular transport. However, bioinspired gels that
exhibit selective transport® will be discussed if they relate to the
NPC. (Note that although such constructs are macroscopic, the
effective pore sizes and cross-link densities are nanoscale
features.) The scope of this review and the work described
herein is mostly related to fundamental aspects of soft matter
and whether we can increase our understanding of complex
systems (the NPC and others) by studying simpler artificial
mimics. Still, possible applications of a functioning artificial
shuttle-cargo transport system will be briefly mentioned.

FG-Nups on solid state nanopores

Solid state nanopores are of great interest in designing NPC
mimics since they provide a stable structural foundation that
also comes with single molecule sensing capabilities.?® Thiol
chemistry on gold and silanization of silica are among the most
widely used strategies for chemical functionalization.”® A
straightforward strategy for designing artificial NPCs, which has

© 2022 The Author(s). Published by the Royal Society of Chemistry
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indeed been relatively popular, is the grafting of FG-Nups ob-
tained from biological sources, to the inner walls of solid state
nanopores. Translocation events of individual transport
proteins can then be detected by the ionic current (essentially
a patch clamp measurement) and compared with the event
frequency for another water-soluble protein, typically bovine
serum albumin (BSA). Optical detection of the molecules that
move through the pores, using fluorescent labels if needed, can
also be implemented, often providing a total flux of molecules
through multiple pores.

Historically, the first study of nanopores functionalized with
FG-Nups is that reported by Jovanovic-Talisman et al>* who
used a device containing two chambers separated by a poly-
carbonate membrane containing 30 nm diameter nanopores
coated with a 15 nm gold film on one side, functionalized with
either Nsp1 or Nup100 (Fig. 2). The FG-Nups were attached to
the gold surface via thiol bonds from a single cysteine residue
introduced by genetic engineering on the C-terminal end of the
proteins,® with a resulting grafting density estimated to 0.05
and 0.04 nm > for Nsp1 and Nup100, respectively. Fluorescently
labelled human nuclear transport factor NTF2-GST as well as
transport factors Kap95 and Kap121 were tested in comparison
to green fluorescent protein (GFP), BSA and immunoglobulin G
(IgG) as control proteins. The transportation was measured by
fluorescence and compared with the diffusive flux through open

View Article Online
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unimpeded by the FG-Nups and an approximate three-fold
difference in permeability could be observed between trans-
port and 40 kg mol ™" control proteins. Importantly, a doubled
translocation rate of GFP bound to Kap95 through a nuclear
localization “signal” (a protein domain) could also be observed
in comparison with GFP alone, thereby demonstrating shuttle-
cargo transport properties. However, all membranes were leaky
to all proteins tested, i.e. no membrane was strongly blocking
any protein. In fact, even pores modified with poly(ethylene
glycol) (PEG) of high molecular weight (30 kg mol™") showed
only a small reduction in diffusive transport. (Later work has
shown complete blockage of protein diffusion through larger
nanopores functionalized with shorter PEG chains, see below.)
Tentatively, this is because PEG as large as 30 kg mol™ " is
actually difficult to graft to the surface.** Another question that
arises from this (pioneering and important) work concerns the
heterogeneity of the pores in the polycarbonate membrane. Is
the selectivity actually perfect for some pores and very poor for
others? This can only be revealed by measurements on single
pores.

Selective translocation of the nuclear transport factor
importin-p (Impp) was demonstrated by Kowalczyk et al.** using
single solid state nanopores with 44 £ 2 nm diameter in 20 nm
silicon nitride membranes functionalised with human Nup98
and Nup153 (Fig. 3A). The functionalization scheme utilized

pores. The transport proteins translocated seemingly a triethoxysilane to first aminate the silicon nitride membrane,
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Fig.2 Pioneering work on solid state nanopores functionalized with FG-Nups. 6 um thick polycarbonate membranes were covered with a thin
gold layer on one side to which FG-Nups were grafted. The passive diffusive flux of proteins was measured and normalized to that measured for
a control membrane with a thin oligo(ethylene glycol) coating. (A flux ratio of one essentially means the FG-Nups did not hinder transport.) The
human nuclear transport factor 2 glutathione S-transferase (NTF2-GST) can translocate unhindered while the flux of other proteins is reduced.
Similarly, karyopherins (Kap95 and Kap121), which are another class of transporters, translocate more frequently than BSA. Also, a shuttle-cargo
complex consisting of Kap95 and green fluorescent protein (GFP) with the importin-B-binding domain (Ibb) translocated more frequently than
GFP alone or an IgG antibody. The electron microscopy image shows the gold coated membrane before any chemical modifications. Repro-
duced with permission from Jovanovic-Talisman et al.?® Copyright 2009 Springer Nature.
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Fig. 3 Work from the group of Dekker and co-workers showing ion current measurements of protein translocation through solid state
nanopores with grafted FG-Nups. (A) First study of FG-Nup modified nanopores in silicon nitride. Transmission electron microscopy images
show a pore before and after FG-Nup coating. The histograms show amplitudes and dwell times of single molecule translocation events of
transport protein Impp vs. BSA for bare and coated pores. Reproduced with permission from Kowalczyk et al.3> Copyright 2011 Springer Nature.
(B) Similar work comparing native FG-Nup Nspl with the mutated less cohesive version Nspl-S. The colormaps show the simulated peptide
density profiles for different pore diameters. The bar plots show the translocation event frequency of the transport protein Kap95 vs. the control
protein tCherry. Reproduced with permission (CC BY) from Ananth et al.*” (C) Similar work using a fully artificial FG-Nup sequence entitled NupX,
inspired by native yeast FG-Nups. The collapsed and extended domains maintain similar degrees of charged and hydrophobic amino acids. The
bar plots show the performance of NupX in terms of protein selectivity (Kap95 vs. BSA). Reproduced with permission (CC BY) from Fragasso
et al.*®

after which C-terminal cysteine modified FG-Nups were
attached via a crosslinker that forms covalent bonds between
amines and thiols, resulting in an FG-Nup grafting density of
~0.02 nm ™. For the control protein BSA, which is similar in
size and charge to ImpP, a decrease in the translocation
frequency of 60 and 5 times could be observed for Nup98 and
Nup153 coated pores respectively. In contrast, the translocation
probability was barely affected at all for ImppB. The signal
magnitudes (ion current change) were unaffected by the FG-

4928 | Nanoscale Adv, 2022, 4, 4925-4937

Nups as expected, while the time of translocation was
increased by more than an order of magnitude when the pores
were coated by FG-Nups. Notably, this effect could be observed
also for BSA, even though the total number of events were much
fewer. In other words, even if BSA was unlikely to enter the FG-
Nup network, it spent the same time inside it as Impf. This may
be viewed as surprising if one interprets a slow translocation as
due to interactions with the polymer. However, we argue that
one can also look at this in another way: if it is hard for the

© 2022 The Author(s). Published by the Royal Society of Chemistry
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protein to find a way through the collection of chains, it will also
lead to a delayed translocation time, even if there are no
favourable interactions with the chains.

The many successful examples of the ‘FG-Nups + solid state
pores’ approach, at least in terms of protein selectivity, confirm
the biological importance of the disordered FG-Nups for selec-
tive barrier properties. Other nucleoporins essentially act as
a fixed scaffold, though recent work suggests that the NPC
diameter is somewhat dependent on the conditions that the cell
experiences, such as osmotic stress.>® A relatively unexplored
question is how the extremely strong electric field (~10’ Vm ™)
inside the pore during ion current measurements affects
transport, ie. is the measurement itself really not influencing
the translocation? However, Kowalczyk et al. also tested to
change the voltage and saw no obvious effect on the trans-
location time, suggesting that this effect is not strong. Still, it
should be noted that optical detection will not have this issue,
but based on our literature survey it seems this approach has so
far not been used for detecting individual molecules in solid
state nanopores with FG-Nups. One reason could be that it is
difficult to obtain a detectable fluorescent signal during the fast
translocation events (~1 ms). Here nanopores with metallic
structures could play an important role by enhancing the
optical signals.**

Another important question is to what extent the specific
amino acid sequence of different FG-Nups influences the
permeability of the barrier that forms inside the pore, with
respect to transport proteins as well as others. Kowalczyk et al.
already noted big differences in BSA translocation probability
between orthologues Nup98 and Nup153.** Specifically, the
strength of multivalent inter- and intramolecular interactions of
FG-Nups, commonly referred to as “cohesiveness”,*® has been
shown to play a decisive role in the permeability. This is central
for the selective phase model of NPC operation,*® where a higher
degree of cohesiveness leads to a less permeable layer. The
different degree of cohesion can be inferred from the amino
acid sequence. In particular, phenylalanines give rise to
hydrophobic interactions which make the network of disor-
dered Nups denser.

In another single molecule solid state nanopore study,
Ananth et al.*” investigated the role of the amino acid sequence
and cohesive properties of the yeast FG-Nup called Nsp1 and
a mutant “SG-Nup” version termed Nsp1-S (Fig. 3B). The
mutated peptide, which still had a disordered structure and the
same number of residues, was more hydrophilic and less
cohesive because the phenylalanines were substituted with
serines. Ion current measurements revealed a significantly
lower conductance through nanopores coated with Nspil
compared to Nspl-S, suggesting that Nspl adopts a more
compact morphology inside the pore due to its higher cohe-
siveness, which was also confirmed by coarse-grained simula-
tions (one bead per amino acid). The grafting densities of Nsp1
and Nsp1-S were found to be very similar based on several
results, including the conductance changes from free
peptides.*” Detection of protein translocation events showed
that selective protein transport was achieved with Nsp1 but not
Nsp1-S. Remarkably, the translocation event frequency of the

© 2022 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Nanoscale Advances

control protein (tCherry) through pores modified with Nsp1-S
was the same as that of bare pores, while Nsp1l essentially
fully blocked the passage.’” Thus, cohesiveness due to FG-
repeats appears to be a crucial factor for selective transport in
the native NPC. However, this does not mean that FG-repeats
are an absolute prerequisite for constructing a selective
shuttle-cargo transport system in a fully artificial setting, where
one could potentially utilize other types of weak multivalent
interactions associated with synthetic polymers. It should also
be noted that, for native NPCs, large-scale protein sequence
analysis®® and detailed simulations® strongly suggest there are
also electrostatic contributions to the transport selectivity.

Digging deeper into what determines the selective perme-
ability of FG-Nups, a recent study by Fragasso et al.*’ investi-
gated the performance of an artificially designed FG-Nup
(Fig. 3C). From a set of design principles based on averaged
amino acid sequence information and physical properties of 5
naturally occurring FG-Nups with high cohesiveness, an artifi-
cial “NupX” was created, reflecting the characteristic cohesive
and self-repulsive regions of the inspired natural FG-Nups, but
featuring a very different amino acid sequence. The artificial
NupX was evaluated in terms of its selective permeability to the
transport protein Kap95 with the same methodology as in the
other two studies.***” Indeed, Kap95 was found to translocate
NupX coated nanopores with almost no hindrance compared to
an uncoated pore, while the BSA control showed almost no
translocation events after NupX functionalization, similar to
tCherry for the case of Nsp1.*” Selectivity was confirmed with
molecular dynamics simulations, which also revealed a similar
type of pore-central density distribution as observed for Nsp1
(Fig. 3B). Overall, these findings strongly suggest that even
though the FG-repeats are central for NPC function, both
qualitatively and quantitatively, the exact amino acid sequence
is not important. In a following study, Fragasso et al. also
quantified the amount of transport proteins bound inside FG-
Nup modified nanopores.** The results showed that besides
the fast translocation events, there is also a “slow phase” of
more strongly interacting transport proteins. The authors dis-
cussed if and how the strongly bound proteins might contribute
to the fast translocation of the loosely bound ones, which is
a long-standing question in the NPC research field. Notably, it
could be important to control the amount of bound shuttles
(without cargo) for fast and efficient translocation of the shuttle-
cargo also in artificial systems.

An alternative to ion current measurements is to use plas-
monic nanopores, which also provide label-free detection
(though rarely at the single molecule level) based on the local
change in refractive index at the surface. Malekian et al.*?
determined the affinity of Kapp1 binding to FG-Nups inside
plasmonic nanopore arrays with a metal-insulator-metal
geometry. Using such structures, it is possible to selectively
modify the pore interior by material-specific chemistry.
However, nanoplasmonic measurements can only detect
protein binding to the FG-Nups inside the pores, not their
translocation through the pores. Furthermore, fabrication of
pores with diameters approaching that of the NPC becomes
quite challenging for a silicon nitride membrane sandwiched

Nanoscale Adv., 2022, 4, 4925-4937 | 4929
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between two metal films. Malekian et al. managed to obtain size. Ku and Stroeve observed a relatively high selectivity
data from samples with ~60 nm pores. Unfortunately, the between two different proteins attributed to differences in the
plasmonic activity is also very weak when the pore diameter isoelectric point.** However, this required a lower salt content to
becomes comparable to that of the NPC.** enhance the electrostatic forces, which can generally be ignored
at distances above the screening length (<1 nm at physiological

Solid state pores with other chemical salt). The gpproach (?f interest for this review i.s nanop01.re.s that
. pr . are chemically modified such that they provide selectivity by
modifications molecular recognition, a feature which is less common in the
literature.”® Although there has been recent interest in specific
binding of analytes to the interior of nanopores, this has mostly
been utilized for sensing applications rather than selective
transport.”> Obviously, transport selectivity requires a coating
that is at least comparable in thickness to the radius of the pore,
otherwise all species will easily leak through an open centre
channel. This is one reason why grafted polymer chains become
interesting, in addition to their structural disorder and
morphology changes,*** which can be thought of as mimicking

Looking beyond FG-Nups, the concept of chemically modifying
nanopores (or “nanochannels” in thicker membranes) to
introduce transport selectivity is quite common in the litera-
ture. However, the number of studies is significantly reduced if
one excludes studies of ion transport and rectification behav-
iour. Furthermore, relatively few articles have demonstrated
selectivity with respect to another property than molecular size.
This is a prerequisite for a shuttle-cargo transport system as the
very same cargo should pass the barrier when conjugated to

a shuttle, despite the fact that this will lead to an increase in FG-Nups.
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Fig. 4 Nanopores modified with synthetic polymers. (A) Pioneering work by Caspi et al. on shuttle-cargo transport through an entirely synthetic
system (the only biomolecule is the cargo). Nanopores with 50 hm nominal diameter in polycarbonate membranes, comparable to those in
Fig. 2, were functionalized with PNIPAM. The cargo was also conjugated to PNIPAM in solution and the self-interactions of the polymer were
suggested to be the cause for selective transport. The plots show transported amounts vs. time at different temperatures. Here "grafted” means
PNIPAM-modified, CCC stands for the cargo carrier complex and SBO stands for the synthetic binding oligomer. Reproduced with permission
from Caspi et al.*” Copyright 2008 American Chemical Society. (B) Electron microscopy images of plasmonic nanoscale cavities. Reproduced
with permission (CC BY) from Malekian et al.*® (C) Sealing with PEG brushes prevents protein translocation as detected by the resonance shift (or
lack thereof) due to protein adsorption in cavities underneath the pores in gold. The cavities have either vertical or curved surfaces depending on
the etch method, as shown by the electron microscopy images. Pore sealing is achieved when the polymer is sufficiently long and the diameter
sufficiently small. Reproduced with permission (CC BY) from Emilsson et al.5°
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Early work showed pores with some selectivity with respect to
oligonucleotide sequences* and even enantiomers,* achieved
by immobilizing receptors on the pore walls. Notably, the pores
in such studies were made in relatively thick membranes (~10
pm) consisting of track-etched polycarbonate or anodized
alumina. Ultrathin silicon nitride membranes are normally
needed to approach the NPC geometry (Fig. 3). Furthermore, the
transport selectivity is typically not so high***® (less than an
order of magnitude), potentially related to heterogeneity in the
pore shapes. Nevertheless, the fact that chemical modifications
can cause at least some selectivity by molecular recognition is
intriguing. However, very few studies have actively aimed to
achieve selective transport of other macromolecules (i.e. not
ions) by grafting synthetic polymers (i.e. not FG-Nups). Here the
work by Caspi et al.*’ sticks out by explicitly aiming to reproduce
NPC transport artificially (and predating even the work in
Fig. 2). In this paper, nanopores were modified with poly(N-
isopropylacrylamide) (PNIPAM) and the passive transport of
fluorescently labelled single stranded DNA was measured
(Fig. 4A). The concept of grafting PNIPAM chains to porous
structures is well-known for creating membranes with thermo-
responsive permeability,*® but the work by Caspi et al. instead
shows a fully artificial shuttle-cargo transport mechanism. The
only biological molecule was the cargo DNA, which was trans-
ported at least twice as fast through the functionalized nano-
pores when conjugated to PNIPAM in solution, despite the
larger size of this conjugate. Interestingly, an increased trans-
port rate of the shuttle-cargo complex compared to the pure
cargo was observed even above the lower critical solution
temperature of PNIPAM, where one would expect aggregation of
all the polymer chains,*® whether they are grafted or free in
solution. The authors generally attributed the effect to favour-
able hydrogen bond interactions between PNIPAM molecules.
Unfortunately the PNIPAM amount inside the relatively long
pores (6 um) could not be characterized and can be expected to
be very limited due to poor reactant access during polymeriza-
tion,” ie. much of the pore interior area could be bare
polycarbonate.

An important criterion to improve selectivity is that polymer-
functionalized nanopores are able to repel macromolecules in
general. If a strong barrier is first obtained, one can then play
around with the chemistry to introduce highly selective inter-
actions with a potential shuttle construct. Hydrophilic and
neutral (or zwitterionic) grafted polymers tend to be good at
repelling other macromolecules, in particular proteins. This is
well-known from decades of research struggling to create so
called non-fouling interfaces for bioanalytical applications.’
However, measurements on planar surfaces are not always ideal
for deducing the mechanism by which so called “polymer
brushes”, which are obtained when chains stretch due to high
grafting density, preventing protein adsorption. The brush may
act as a barrier film that protects the underlying surface, but in
principle adsorption can also be prevented by competitive
polymer-surface interactions.> Even for the extensively studied
case of PEG brushes on gold (a common sensor surface mate-
rial), the mechanism is still being debated and some work
suggests it is competitive adsorption which prevents proteins

© 2022 The Author(s). Published by the Royal Society of Chemistry
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from adsorbing.*® Using surface plasmon resonance, we*' and
others® have shown that PEG brushes can exclude other
macromolecules (e.g. proteins or other polymers) from a zone
near the surface that corresponds well to the expected brush
thickness according to a de Gennes model,* as well as the
thicknesses obtained when measuring by other methods.*
These results confirm that the brushes act as barriers in
a qualitative sense, but they cannot provide information about
the protein distribution vs. the distance from the surface and
the barrier strength in a quantitative manner. To address this
question, our group systematically grafted PEG chains of
different lengths to nanopores of different diameters in 30 nm
thin gold films (Fig. 4B). Using the nanoplasmonic signal from
the pore arrays, it was observed that as the planar surface brush
height became comparable to the aperture radius, the pores
entered a fully sealed regime with respect to serum proteins.>
Importantly, PEG is a homopolymer and has no cohesive
nature. The degree of hydration for the brushes is above
80%°°*% and still they prevented protein translocation fully
(within the uncertainty of the measurements). FG-Nups are
different in their chemical nature compared to synthetic poly-
mers, so this is not exactly contradictive, but still quite opposite
to the results in Fig. 3B, where the less cohesive construct
became leaky for proteins. In fact, the findings in Fig. 4C
suggest that strong barriers can be created solely from entropic
effects because the chains are not interacting and occur at a low
volume fraction. In principle, one can imagine a state where
proteins are present inside the brush and no bonds need to be
formed or broken to reach this state. Still, this does not occur,
which is consistent with the picture that the probability of
finding a way through the (constantly moving) chains is too low.
In thermodynamic terms, the conformational entropy loss of
the chains due to the volume occupied by the proteins is too
high. Favourable (enthalpic) interactions are then required to
reduce the free energy penalty of insertion into a disordered
polymer brush, as proposed long ago for the NPC.*® At the very
least, the results in Fig. 4C prove that high cohesiveness among
disordered polymer chains is not an absolute requirement for
forming a strong barrier. Indeed, the importance of cohesive-
ness in the NPC continues to be debated. For instance, recent
theoretical work by Gu et al.*® concluded that barrier strength is
not always a monotonic function of the degree of cohesiveness
and pointed out the important intrinsic connection with the
density of the assembly. For a brush on a planar surface, the
grafting density also influences polymer density. For a brush
inside a pore, the molecular weight will also matter.

In a follow-up study on plasmonic nanopores, Emilsson
et al® studied interactions between PEG brushes and IgG
antibodies. It was shown that upon antibody binding the brush
morphology changed considerably by local collapse of the PEG.
Inside the pore, this effect made the brush barrier fully
permeable for proteins again. Interestingly, an extremely low
number of antibodies (probably just one) was sufficient to open
each pore. This work can be viewed as an artificial analogy to the
morphology changes observed in FG-Nup brushes (on planar
surfaces) upon binding of transport proteins.*® However, while
the PEG antibodies caused the brush barrier in the pores to
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“open”, this is not the case when transport proteins (the bio-
logical shuttles) bind to the FG-Nups in the NPC. In fact, they
have been suggested to strengthen the barrier function in the so
called Kap-centric model.*® Already in the work presented in
Fig. 2, it was observed that the presence of transport proteins
improved selectivity in the sense that the flux of BSA was
reduced.” This is supported by the fact that the mass of
transport proteins inside the (yeast) NPC is almost as high as
the mass of the FG-Nups themselves® (not including the addi-
tional mass from cargo).

Fully organic constructs

An alternative to nanopores in inorganic materials is fully
organic constructs, normally self-assembled in the solution

DNA origami &
ring + DNA
oligonucleotide
\/ e

Cs{j\ 7

FG-Nup
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phase. In particular, directed folding of DNA, so called “DNA
origami”, has been used to build transmembrane pores for
a decade, although initial pore architectures had just a few nm
of inner diameter.®® Later developments showed somewhat
larger DNA pores with size-selectivity in the range of typical
proteins®* and electrical conductivity similar to or higher than
the NPC.*”* Also, several DNA pores that can be physically
opened and closed by complementary sequences have been
demonstrated.®**%* However, all of these constructs lacked the
complexity required to even approach the selectivity of native
NPCs. To do so, it was important to look beyond simply building
a mimetic NPC of the correct dimensions but also control the
number and spatial positioning of different FG-Nups. Ketterer
et al.®®* built an artificial NPC using a DNA origami ring with
34 nm inner diameter as a scaffold upon which to attach
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Fig. 5 DNA origami strategies. (A) NPC-mimic with 34 nm inner diameter and 32 FG-Nups. Upon docking to a solid state nanopore, the
conductance could be measured for Nspl and its mutant Nsp1-S. Scale bar is 50 nm. Reproduced with permission (CC BY) from Ketterer et al.®®
(B) Another DNA origami construct with its dimensions indicated. The images show repeated AFM scans of the same constructs containing 48
copies of Nup100 (top) or Nspl (bottom). The time elapsed between each image is 1.6 s Reproduced with permission (CC BY) from Fisher et al.®¢

Copyright 2018 American Chemical Society.
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specific FG-Nups (Fig. 5A). The FG-Nups contained single
strands complementary to free ends in the ring, enabling
extremely precise control of the number and positioning of FG-
Nups inside in comparison with all of the solid state nanopores
described above. For instance, the 8-fold symmetry of FG-Nup
positioning in the NPC> can only be reproduced by DNA
origami. As expected, FG-Nups displaying less hydrophobic
interactions (the Nsp1-S mutant) formed less dense networks,
as derived from the ion conductance. Simultaneously, Fischer
et al.®® built another DNA origami pore scaffold comparable to
the NPC with 46 nm inner diameter (Fig. 5B). FG-Nups were
positioned either inside or outside the ring in specific numbers
up to a maximum of 48, the number for budding yeast NPCs,
leading to a different degree of crowdedness in the ring interior.
Using multiple techniques, the authors also determined that
the fine morphology of the assemblies was dependent on the
exact FG-Nup sequence. (Nup100 and Nspl were compared,
where the latter is less cohesive.) The authors also discussed
important limitations of using AFM to probe the dynamics of
the FG-Nup structure fluctuations,® the main issue being that
they may fluctuate in structure faster than the imaging can be
performed. Yet, changes in the overall morphology of the ring
interior detected over timescales of ~1 s were attributed to real
spontaneous fluctuations and not instrumental artifacts.

AFM has also been used in another study to observe the
dynamics of FG-Nups inside a DNA origami NPC mimic and
compare them with native NPCs."® Such experiments revealed
that FG-Nups in a DNA origami mimic interact collectively to
form clumps that persist for ~1 s, similarly to the results in
Fig. 5B. Again, the exact behaviour differed subtly between
types of FG-Nups. Comparatively, in native NPCs, FG-Nups
appeared statically confined to a morphology, likely due to
the presence of other macromolecular species in the living
system*® (biological shuttles and cargo). These results provide
important insights in the molecular dynamics of the NPC
interior which can be important to consider when construct-
ing artificial systems. However, it appears that to date no
experiments showing selective protein translocation through
DNA-based NPC mimics has been shown. One downside of
DNA origami pores, similarly to native biological nanopores, is
their need to be anchored somewhere. Chemical modifica-
tions that introduce hydrophobic groups allow spontaneous
insertion into the membrane of lipid vesicles, but the vesicle
interior is generally not easily accessible. A pore-spanning
membrane is more suitable for access to both reservoirs,®
but such constructs are a bit more tedious to assemble. It is,
however, possible to “dock” the entire DNA construct to
a silicon nitride nanopore (Fig. 5A).

A few all-organic alternatives to DNA origami have been
presented. Inspired by the NPC, Zhu et al.*” presented poly-
merosomes with selective microphase domains in the order of
tens of nm that could efficiently mediate the transportation of
macromolecules such as proteins and RNA across the vesicle
membrane based on slight pH changes. Other organic nano-
pore constructs do exist and some are switchable,* but again
they tend to be limited to very small diameters (<10 nm) barely
comparable to the NPC.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Macroscopic gels

The shuttle-cargo transport of the NPC occurs inside a nano-
pore but can be viewed as a property associated with phases and
local domains of the macromolecules in the nanoscopic inte-
rior. Hence, for the scope of this review, it can be relevant to
look at selective protein diffusion also in macroscopic gels,
given that hampered or enhanced motion is indeed an effect of
attractive or repulsive interactions with the gel matrix and its
nanoscale dynamic structure. It was shown in 2006 by Frey
et al.® that isolated FG-Nups could form hydrogels (Fig. 6A) and
in 2007 that these gels exhibited selective protein transport.”
The results were interpreted in the framework of the ‘selective
phase model’, where cohesiveness is essential and transport
proteins move through the network by repeatedly breaking
existing connections and attaching themselves to the hydro-
phobic FG domains instead. Importantly, it was also shown that
a cargo protein could be transported >10* times faster, in terms
of the influx rate to the gel, when bound to a transporter
(Fig. 6B). Although not directly comparable, this is a strong
selectivity when considering what has been achieved with solid
state nanopores®>*” as explained above.

Several following studies have used similar methodology and
prepared NPC-inspired gels for measuring protein diffusivity
within. Labokha et al.”* investigated 10 different gels formed by
the FG-domains of 10 different Nups from Xenopus (clawed
frog) and found that they exhibited very varying degrees of
protein selectivity. For several of the gels, both a small
(mCherry, 26 kg mol ') and a large (tCherry, 105 kg mol %)
control protein were able to diffuse relatively quickly through
the mesh and the larger protein even bound to a few of the
gels.” A nuclear transport protein (NTF2) showed strong pref-
erential partitioning to all gels. In contrast to native Nups
directly obtained from biological sources, work by Ader et al.”®
used genetic engineering to obtain only parts of an FG-Nup
(Nsp1p) for forming different hydrogels. Their behaviour was
considerably different with respect to protein binding in
comparison with gels formed by the full Nsplp sequence.
Following the direction of modified sequences, Kim et al.
prepared two hydrogels consisting of a fully artificially engi-
neered peptide sequence.”” In both cases, an amino acid
sequence containing one FG was repeated 16 times to form the
full peptide. Notably, this is not so different from the design
principle used to prepare the “NupX” (Fig. 3C). Additionally,
coiled domains were introduced at the ends to promote fast
gelation. It was shown that a fluorescent model cargo protein
diffused quicker through the artificial FG gel in the presence of
Impp (Fig. 6C), which recognizes a domain introduced on the
cargo protein (again by genetic engineering). The enhanced
transport was actually in part attributed to changes in the gel
morphology upon incorporation of Impf. Still, a non-cargo
protein (that does not interact with Impp) was not transported
as efficiently (a factor of 3-5), even in the presence of Impp. This
once more shows a complete shuttle-cargo transport mecha-
nism in NPC-inspired gels. Later, Kim et al. also proposed the
concept of selective target capture inside synthetic FG-Nup gels

Nanoscale Adv., 2022, 4, 4925-4937 | 4933
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Fig. 6 Selective protein transport inside macroscopic gels inspired by the NPC. (A) Photos showing gels spontaneously formed by different FG-
Nup peptides. Reproduced with permission from Labokha et al.”* Copyright 2013 John Wiley and Sons. (B) Enhanced transport in a FG-hydrogel
of a fluorescent fusion protein (acRedstar and the IBB domain) in the presence of Impf. Reproduced with permission from Frey et al.”° Copyright
2007 Elsevier. (C) Example of shuttle-cargo transport through a gel prepared by an artificial peptide sequence. The fluorescence from a protein
conjugate (IBB-MBP-EGFP) capable of binding to Impp was measured in the presence or absence of Impp (left plot). Additionally, a protein
incapable of binding to Impp (MBP-mCherry) was not transported as efficiently into the gel (right plot). This illustrates a shuttle-cargo transport
mechanism. Reproduced with permission from Kim et al.”> Copyright 2015 John Wiley and Sons.

for bioseparation purposes using the transport protein NTF2.7*
There are also additional studies on NPC-inspired gels focusing
on the gelation process and the fine structure.” Notably, Celetti
et al.”® showed that in microfluidic devices, FG-Nups can also
phase separate into droplets, i.e. liquid-state assemblies with
protein transport properties similar to the gels (which are solid
in terms of rheology). Although still relatively large, such
constructs can contribute to a better understanding of the NPC
operation as wells as how to achieve shuttle-cargo transport
artificially.

Discussion: performance remains poor

Our overall impression after reviewing the literature is that
many interesting studies exist, but an efficient artificial shuttle-
cargo transport system for macromolecules is still quite far
from realization. In fact, only two concrete examples have been
found: reports by Caspi et al* (fully artificial system) and
Johanovic-Talisman et al.*® (FG-Nups on solid state nanopores).

4934 | Nanoscale Adv., 2022, 4, 4925-4937

We consider these studies pioneering, but the performance in
terms of selectivity (primarily in terms of cargo vs. shuttle-cargo
complex) is low, more precisely a factor between 2 and 5 (Fig. 2
and 4A). In both studies, the pores seemed leaky and cargo
biomolecules passed through the nanopores only about twice as
frequently when conjugated to shuttles.>**” In contrast, using
ion current measurements on single nanopores, efficient
blocking of non-specific proteins while maintaining passage of
transport proteins has been shown in a few cases,*”** but there
has been no demonstration of a complete shuttle-cargo trans-
port mechanism. Clearly, further work is needed to match
biological NPCs, which are a result of over one billion years of
evolution.> An impressively high selectivity has, however, been
obtained with macroscopic gels, starting with the initial work by
Frey et al.”® (Fig. 6B). Still, to truly resemble the NPC, these gels
would have to be many orders of magnitude smaller or at least
thinner. (In the work we have reviewed they do not even have an
“exit” side.) It is not obvious how one would prepare “nanogels”

© 2022 The Author(s). Published by the Royal Society of Chemistry
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that separate two compartments, nor how the transport selec-
tivity would be affected by such miniaturization.

Why is it so hard to achieve the goal? Starting from scratch,
one can identify some reasons why the task of constructing an
artificial shuttle-cargo transport system is technically chal-
lenging. To begin with, the barrier must at least to some extent
be able to change its morphology, for instance by being disor-
dered in structure like a polymer brush. This is because any
fully fixed structure will be almost solely a size filter and the
shuttle-cargo complex (to pass through) will always be larger
than the cargo (to be blocked). Even in the selective phase
model the morphology is changed in the sense that the hydro-
phobic interactions are broken and reformed to allow proteins
to pass.®® Yet the morphology changes are a delicate matter: if
the barrier is disrupted entirely upon shuttle binding, the
system loses its selectivity, i.e. it simply switches between open
and closed states with respect to proteins.*”** In other words,
the shuttles must interact with the barrier and alter its
morphology in a very particular manner. Furthermore, whatever
effect causes repulsion between free cargo and the barrier will
still be present when the shuttle-cargo complex translocates, i.e.
the affinity to the shuttle must somehow dominate. At the same
time, if the shuttles bind with too high affinity, they may not be
spontaneously released again and the pore will likely be clog-
ged.” When considering all these logical criteria it is not
surprising that it becomes challenging to construct a well-
functioning artificial system, even with the tools that nano-
technology has provided in the last few decades. It should also
be noted that transport efficiency in terms of flux is another
important aspect besides selectivity and again the NPC is quite
remarkable as it translocates hundreds of transport proteins
simultaneously with a dwell time of only a few milliseconds for
each.” Indeed, inside the cell, the bottleneck in the full trans-
port process does not seem to be the NPC passage, but the
binding of cargo proteins to karyopherin shuttles.’

We also argue that another reason why there is still no high-
performance artificial shuttle-cargo transport system for
biomolecules is that we have a limited understanding of soft
matter and intrinsically disordered macromolecules (in
comparison with solid state materials). This is well-illustrated
by decades of discussion about NPC operation and the large
variety of the proposed models. It certainly does not help that
experimentally; results that are almost contradicting can be
found in the literature. For instance, we explained above how
some studies show that a higher degree of cohesiveness of
grafted FG-Nups is needed for strong barrier properties,*” while
some other studies show that a highly hydrated “uncohesive”
polymer brush, in the sense that it has no self-interactions, still
can be an excellent barrier.® Even if we gradually improve our
understanding of barrier functions, the situation is further
complicated by the change in morphology of disordered
macromolecules as they interact with molecules in solution, an
effect that is also sensitive to the nanoscale geometry.”” All in all
it becomes very difficult to account for and measure all these
effects, especially when considering their dynamics and non-
equilibrium situations.

© 2022 The Author(s). Published by the Royal Society of Chemistry
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Conclusion and outlook

We have reviewed artificial systems that mimic the nuclear pore
complex in eukaryotic cells. The literature on this specific topic
is relatively sparse compared to many other research fields, as
evident from the bibliography. However, the topic is quite
interdisciplinary and connects very well with highly popular
research areas, such as solid state nanopore sensors and poly-
mer brushes.

To summarize, ion current measurements have provided
a lot of information on selective protein translocation through
FG-Nups grafted to solid state nanopores. They have, however,
not demonstrated a complete shuttle-cargo transport system.
This has only been demonstrated with limited selectivity in two
studies that measured passive diffusion. Some examples of
NPC-inspired gels capable of shuttle-cargo transport can be
found in the literature, but they are macroscopic. DNA origami
has recently been used to make pores where FG-Nups can be
positioned with extreme precision, but based on our literature
survey no protein translocation experiments through such
constructs have been presented to date.

Finally, it seems appropriate to ask the question why one
would want to pursue the goal of constructing an artificial
shuttle-cargo transport system. An obvious reason is that
through studying artificial systems we can learn more about the
biological nanomachinery. Artificial systems are easier to
control and model as they contain very few components
compared to the thousands of different proteins found inside
a living cell alone. The behaviour observed in the artificial
system can then be used to make educated guesses about how
the biological system works. Unsurprisingly, understanding the
NPC is critical for medical purposes.” One can also think of
applications of a functioning shuttle-cargo system in biotech-
nology. Novel protein separation methods have already been
proposed.”™ Specifically, one can envision that if the shuttle is
also able to act as a receptor, it can capture specific targets from
a complex sample and transport them to the other side of
a membrane with nanopores. Such a feature could be of interest
for future bioanalytical devices, though perhaps the main
driving force for pursuing research on the topic of this review is
scientific curiosity and a fascination for the complexity of soft
matter.
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