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An overview of nanoparticles commonly used in
fluorescent bioimagingf

Otto S. Wolfbeis

This article gives an overview of the various kinds of nanoparticles (NPs) that are widely used for purposes of
fluorescent imaging, mainly of cells and tissues. Following an introduction and a discussion of merits of fluorescent
NPs compared to molecular fluorophores, labels and probes, the article assesses the kinds and specific features
of nanomaterials often used in bioimaging. These include fluorescently doped silicas and sol-gels, hydrophilic poly-
mers (hydrogels), hydrophobic organic polymers, semiconducting polymer dots, quantum dots, carbon dots, other
carbonaceous nanomaterials, upconversion NPs, noble metal NPs (mainly gold and silver), various other nano-
materials, and dendrimers. Another section covers coatings and methods for surface modification of NPs. Specific
examples on the use of nanoparticles in (a) plain fluorescence imaging of cells, (b) targeted imaging, (c) imaging of
chemical species, and (d) imaging of temperature are given next. A final section covers aspects of multimodal
Received 16th November 2014 imaging (such as fluorescence/nmr), imaging combined with drug and gene delivery, or imaging combined with
therapy or diagnosis. The electronic supplementary information (ESI) gives specific examples for materials and
methods used in imaging, sensing, multimodal imaging and theranostics such as imaging combined with drug deli-
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very or photodynamic therapy. The article contains 273 references in the main part, and 157 references in the ESI.

1. Introduction

The term imaging can be understood in many ways. Imaging is
a kind of photography in most people’s perception. Scientific
imaging goes far beyond this. Images can additionally be created
by diverse methods such as (near) infrared and Raman spectro-
scopy, nuclear magnetic resonance (often referred to as magnetic
resonance imaging; MRI), radioimaging using respective nuclides,
CT imaging, positron emission tomography, electrochemical
imaging using rastering electrodes, by mechanical methods such
as AFM, and by even more sophisticated scanning methods such
as laser ablation ICP-MS MALDI-MS and the like. It has become
accepted that virtually any method yielding a 2-dimensional
picture (that, ideally, is presented in pseudo-colors) can be referred
to as “imaging”. Many of these methods are destructive or require
extensive sample preparation, but others are not and therefore well
applicable to living systems or intact tissues. The use of nano-
particles as contrast agents for in vivo bioimaging using MRI
probably is the largest single field of applications but this topic
is not covered in this review. The purpose of this review is to give
the reader an overview of the wealth of nanomaterials that do exist
for use in fluorescent imaging, and to assist in making decision as
to which material may be selected to solve a specific problem.
Fluorescence (and phosphorescencet) based imaging has found
particular interest because these spectroscopies are sensitive,

+ The common term fluorescence is used here for the sake of simplicity even if
the term phosphorescence may apply.
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selective, rich in contrast, and versatile. The past 20 years also
have experienced an enormous increase in resolution that has
arrived at the single nanometer scale. One may first differentiate
between two kinds of fluorescent imaging. The first involves
imaging based on intrinsically fluorescent (bio)chemical species
(such as NADH in tissues, crude oil in - and on - seawater, or
chlorophyll in all kinds of plants and the open sea). The second
covers methods for imaging of samples or cells that have been
made fluorescent by adding synthetic fluorescent probes, labels,
nanoparticles or nanosensors. The use of such probes is, in fact,
indispensible in order to detect species that are not amenable to
direct fluorometric imaging (such as of pH) but this also implies
the risk of local perturbation by the probe or the material added.

The acquisition of images of biological matter by using
fluorescent probes or fluorescent labels and nanomaterials is
generally referred to as bioimaging and forms a large field of its
own. Letting aside conventional (light) microscopy and MRI,
fluorescence imaging probably is the most widespread method
in biosciences. Respective pictures are attractive, easily compre-
hensive, and can be found in a good fraction of research papers
and magazines. Reviews cover topics such as fluorescent nano-
structures for bioimaging,' quantum dots for bio-imaging®®
and single molecule imaging (“one quantum dot at a time”),*
gold nanoclusters with tunable fluorescence as bioimaging
probes,”® aggregation-induced emission-based fluorescent
nanoparticles,’ nanocomposite particles for bioapplications
including imaging,” on nanoparticles in drug delivery, thera-
peutics, diagnostics and imaging,® on quantum dots and polymer
hybrid composites as fluorescent switches and turn-on probes for
sensing anions,’ on aspects of deep tissue microscopy and optical
imaging,'® on controlled synthesis, spectra and bioapplications
of lanthanide-doped luminescent nanoprobes,'* on advances in
(NP-based) fingerprint imaging,"> on the intersection of CMOS
microsystems and upconversion NPs for bioimaging and bio-
assays,"* to mention only a few. A review by Biinzli'* on lantha-
nide luminescence for biomedical analyses and imaging contains
a section 5.6. on improving sensitivity by using certain nano-
particles. Others are cited later in the respective sections and
in the ESL.}

The term fluorescence does not imply a single spectroscopic
method but rather includes a variety of techniques in that images
can be acquired by measurement of intensity, decay time (lifetime)
and polarization, but also by studying effects caused by resonance
energy transfer, (dynamic) quenching, or photo-induced electron
transfer. Optical imaging was limited to resolutions of a few
100 nm until about 1995, but substantial thrust in terms of
resolution resulted from the availability of fluorescent methods
of imaging on the nanoscale by methods such as STED, PALM, or
STORM, all based on laser technology. Chemo- and biolumines-
cence can also generate images'> but chemiluminescence requires
the addition of reagents and usually is unidirectional in that an
increase in the concentration of an analyte can only be monitored.
Both methods are time-dependent.

When focusing now on bioimaging based on synthetic
fluorescent probes and nanoparticles, one may differentiate
between three techniques. (1) In the most simple one, a strong
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fluorophore or fluorescent nanoparticles are internalized into
cells so that they can be imaged. The only purpose of such
fluorophores and nanomaterials is to render cells or tissue
fluorescent. They do not possess (and are not expected to
possess) affinity for a specific site, nor do they respond (like
indicator probes) to the presence of chemical species such as
certain ions or organic molecules. (2) The second technique is
referred to as “targeted bioimaging”. It enables specific
domains or species to be detected, very much like immuno-
staining or fluorescence in situ hybridization. In order to
accomplish this, fluorophores or nanoparticles are applied
whose surface has been properly functionalized, for example
with receptors, ligands, antibodies or oligomers so as to recog-
nize the specific counterpart. Examples include targeting of
tumor markers, genes, mitochondria, membranes, or the amy-
loidic plaques in Alzheimer-associated tissue. (3) The third
technique is making use of probes and nanomaterials with
sensing capability. This enables (bio)chemical species to be
imaged that are to not intrinsically fluorescent. Examples
include imaging of the distribution of chemical species such
as pH values, glucose, calcium(u) or oxygen in the living and
metabolizing cell, if not in tumor cells or in cells exposed to
candidate drugs. This group also involves nanosensors for
temperature. Representative examples for each of these techniques
will be presented in Section 5.

2. Fluorescent nanomaterials and
nanoparticles versus molecular
fluorophores, labels and probes

The availability of nanomaterials for purposes of imaging has
generated a variety of methods for imaging, with features
including improved brightness (defined as absorbance times
quantum yield), inertness to their microenvironment and a more
even distribution (unless targeted imaging of certain domains is
desired, of course). Nanoparticles (NPs), in contrast to molecular
probes, often are not cytotoxic and do not suffer from nonspecific
binding by cellular biomacromolecules or unwanted sequestra-
tion. Binding of molecular probes by cellular proteins (or sites)
can affect both the optical properties of the probe and even the
function of the protein or the binding site. Dyed NPs, or
intrinsically fluorescent NPs, in contrast, are virtually inert and
do hardly interact with cellular proteins nor are their optical
properties affected by the proteins outside. Not surprisingly, all
known NPs have photostabilities that are distinctly better than
those of molecular probes. Many NPs can be easily internalized
into cells and tissues (depending on charge and surface
chemistry; positively charged facilitates internalization) and
can be even targeted to specific sites. Compared to fluorescent
proteins one notes the more simple handling of NPs and more
predictable results. Many kinds of NPs are commercially avail-
able. The simplicity of loading or labeling with fluorophores or
NPs is a particular issue if hundreds of cell lines are being
handled simultaneously, for example in high-throughput
screening. Second-harmonic generation (which results in low

This journal is © The Royal Society of Chemistry 2015
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background noise) is more easily accomplished with NPs as
demonstrated in the review by Dempsey et al.'® on respective
nanocrystals for in vivo imaging, in particular on nano-
diamonds, nonlinear crystals, quantum dots and SERS NPs.
Finally, it is fair to say that nanosensors have calibration plots
that are quite similar if not identical if acquired in vitro and
in vivo. Molecular probes, in contrast, are quite different in that
respect. It is a matter of fact that one must never use a
calibration plot that was established in plain buffer solution
to quantify a parameter with data acquired in a cellular system.

3. Kinds of nanomaterials often used in
bioimaging, and their specific features

A complete coverage of all the nanomaterials used so far in
bioimaging would by far exceed the frame of this review but
rather fill a book. The following is a discussion of the nano-
materials most often used for purposes of bioimaging. These
include NPs made from silica and organically modified silica,
hydrophobic and hydrophilic organic polymers, semiconducting
organic polymers, quantum dots, carbonaceous nanomaterials
including carbon (quantum) dots, carbon nanoclusters and
nanotubes, nanodiamonds, upconversion materials, metal
particles, metal oxides and others. The discussion on the
potential cytotoxity of NPs is going on, and numerous studies
have been performed to investigate the potentially harmful or
the perturbing effect of NPs on physiological systems."”

3.1. Fluorescently doped silicas and sol-gels

Silica nanoparticles (SiNPs) were among the first ones to be
used in bioimaging. Excessive literature on their uses does
exist."® The group of Wiesner has reviewed' the state of the
art in SiNPs for use in sensing/imaging and has described
numerous kinds of SiNPs, among them the one-pot synthesis of
PEGylated mesoporous and fluorescent SiNPs possessing a
single pore, tunable sizes of around 9 nm, and narrow size
distributions.®® In fact, mesoporous silica (in addition to
materials related to “controlled porous glass’) are more often
used now because they can be heavily loaded with fluorescent
dyes, photosensitizers or diagnostic reagents as will also be
shown in Section 6. Fluorescent mesoporous silica can be
obtained via hydrothermal reaction and functionalized, if
desired, with reactive siloxanes.”* Such particles possess low
cytotoxicity and excellent cell imaging capability.

SiNPs can be easily doped with various kinds of organic,
metal-organic and metallic fluorophores, and emission wave-
lengths range from 300 to 1000 nm, with a trend towards NPs
possessing longwave (>600 nm) emissions®® because the
fluorescence of NPs at wavelengths of >500 nm is often
interfered by the autofluorescence of cells. Color, decay times
and size are widely tunable, and dopants can be hydrophobic,
hydrophilic, or ionic. SiNPs also may be coated with fluoro-
phores but attention has to be paid to possible aggregation
effects that usually are accompanied by self-quenching. Two-
photon excitation has been demonstrated but this depends on
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the kind of fluorescent label. SiNPs and their aggregates of
>300 nm in size cause strong light scattering. SiNPs are fairly
well biocompatible (i.e., not harmful to cells and tissues). Cell
permeability depends on zeta potential. If negatively charged,
they hardly pass cell membranes. They are virtually nontoxic,
easily excreted (unless particle sizes exceed 50 nm), but also
quickly coated by intracellular proteins and attacked by the
immunosystem. Their surface can be easily modified with a
variety of coatings and using standard silica (and sol-gel)
surface chemistry. Particles do not swell but tend to aggregate
in the presence of bivalent ions unless inert shells are deposited
on the surface. Mesoporous silica structures warrant strongly
increased surface areas and enable high loading of cargo for
cellular imaging and targeting. The state of the art in designing
and characterizing fluorophore-doped SiNPs for bioapplications
has been reviewed.*?

SiNPs and other NPs are often doped with luminescence
lanthanides. Their use in bioimaging has been reviewed by
Chen et al,”* and the fabrication of down-converting and
up-converting luminescent probes for optical imaging by Zhang
et al.>® Lanthanide-based fluorophores have attractive features
such as (a) relatively long decay times which facilitate time-
resolved fluorometry and, thus, efficient background suppression;
(b) fairly narrow emissions; (c) single-photon and two-photon
excitation; and (d) upconversion luminescence and downconver-
sion luminescence. Lanthanide doped SiNPs are obtained by
incorporating lanthanide ions, or by grafting the SiNPs with
complexes such as Eu(m), Tb(m) or Gd(m).>® Such fluorescent
NPs have decay times between 0.35 and 1.87 ms (which facilitates
gated spectroscopy), do not photobleach, and display the typical
narrow emission bands of lanthanide ions. Other examples for
lanthanide doped NPs (also with materials other than silica) will
be given in the following sections and in the tables. In addition to
silica, NPs made from titania and zirconia and doped with organic
and inorganic fluorophores also are known but less often used.
They are treated in Section 3.11 (on Other Nanomaterials).

Sol-gels and organically modified sol-gels (ormosils) may
also be used for forming NPs. A large variety of materials are
known. Their porosity can be governed by the proper choice of
materials and by varying experimental conditions such as acid
or base catalysis. Sol-gels are prepared by polycondensation
of tetraalkoxysilanes, and ormosils by copolymerization of
mixtures of tetraalkoxysilanes with alkyl-alkoxysilanes in varying
ratios, or from alkyl-alkoxysilanes only. A large variety of materials
is known depending on whether mono-, di- or trialkylsilanes of
general formula (R;),(R,0);_,Si-R; (Where R, is alkyl or aryl, and
R, is alkyl) are being used. The NPs usually are made fluorescent
by non-covalent doping with various kinds of fluorophores.
Unless pore sizes are small, covalent immobilization is advised,
however. Colors, decay times and particle size are widely tunable.
As with SiNPs and others, fluorescence at >500 nm is often
interfered by autofluorescence of biomatter. Beads and bead
aggregates of >300 nm in size cause strong light scattering.
Sol-gel NPs are well biocompatible which can be improved by
PEGylation (see Section 4). Cell permeability depends on zeta
potential in that NPs are hardly cell permeable if negatively charged.
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Sol-gel NPs are nontoxic and - if small enough - are easily
excreted. Their surface can be modified ex vivo with a variety of
coatings, and the surface chemistry of silica and sol-gels is well
established. Particles do not swell but tend to aggregate in the
presence of bivalent ions if their zeta potential is negative.
Photobleaching of the dopant dye can be an issue even though
this is often weaker that in the case of dyes that are molecularly
distributed in cells.

3.2. Hydrophilic polymers

Hydrophilic materials for use in NP-based imaging include the
various kinds of hydrogels, but also natural products such as
cellulose. Nanogels are soft and usually water soluble. If NPs are to
be formed, they have to be crosslinked or mixed with another
material in order to form hybrid materials. Hydrogels are well
permeable to ions and hydrophilic organic species such as glucose
or amino acids, but not to large biomolecules usually. Typical
polymers include polyacrylamide (PAA), polyurethanes, poly-
(hydroxyethyl methacrylamide) (pHEMA), certain poly(ethylene
glycols) or specialty polymers such as Pluronic™ [a commercial
poly(ethylene glycol)-co-poly-ethyleneoxide)] widely used in
NP-assisted drug delivery. The design of fluorescent organic nano-
structures for bioimaging has been reviewed.”” Depending on the
kind of polymer and the degree of crosslinking, such NPs undergo
substantial (and ionic strength-dependent) swelling in water, but they
do not tend to aggregate. The emission wavelengths of respective NPs
can be adjusted to almost any wavelength between 300 and 1000 nm
via the dopant, usually an organic or metal-organic fluorophore
whose color, fluorescence, decay time and size are widely tunable.
NPs made from organic monomers can be crosslinked to a
various extent, and this determines many of their properties
including swellability and solubility. The fluorescence of
particles at <500 nm often interfered by autofluorescence of
most cells. NPs prepared from hydrogels are biocompatible,
cell permeable (depending, as always, on the zeta potential),
nontoxic, slowly excreted, fairly quickly coated by intracellular
proteins and attacked by the immunosystem. Many of them can
be degraded by intracellular enzymes. Their surface cannot be
easily chemically modified with additional coatings. Function-
alities such as amino groups are better introduced by adding
a functional monomer to the main monomer and then to
initiate radical polymerization. Techniques are known to prepare
organic polymer core-shell NPs. Fluorescent (and other) dopants
tend to leach into the aqueous environment of the particle unless
firmly retained (electrostatically or covalently). Amino-modified
cellulose was applied in a luminescent sensor for high-resolution
imaging of pH in vivo.”® pH values were imaged by detecting
the green fluorescence of the pH probe fluorescein covalently
linked to aminocellulose. A ruthenium phenanthroline
complex was incorporated into poly-acrylonitrile beads to give
a pH-independent red reference signal. The beads were immo-
bilized in a polyurethane hydrogel on a thin transparent support.
Both in vitro and in vivo experiments revealed the versatility of the
method during physiological and chronic cutaneous wound
healing. The method was later extended to simultaneously image
extracellular wound pH and oxygenation in vivo.*® The same pH
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beads were used, and poly(styrene-co-acrylonitrile) particles dyed
with Pd(u)-meso-tetraphenyl-tetrabenzo-porphyrin were added to
give a near-infrared signal that depends on local oxygen partial
pressure.

A typical recent example of the use of a PAA hydrogel is
provided by nanoparticles containing free amino groups that were
prepared by copolymerization of acrylamide and methylene-
bisacrylamide with 3-aminopropyl-acrylamide and labeling the
terminal amino groups with pH probes such as fluorescein,
Oregon Green, Alexa 633, and others. The resulting sensor NPs
cover a wide range of pH (4.0-8.0) which is needed in
certain situations even in cellular imaging.*>® In addition to the
widely used crosslinked polyacrylamides (PAAs), other acryla-
mides including polymethacrylamide or poly(N-alkylacrylamides)
were employed. For example, core-shell microgels containing
indicators were fabricated®! by two-stage free radical precipitation
polymerization of N-isopropylacrylamide. The shell of the
microgel exhibits a low critical solution temperature and
undergoes a transition from a swollen state to a de-swollen
state, associated with a hydrodynamic radius of ~450 nm at
25 °C (in vitro) and of ~190 nm at 37 °C (in vivo). The microgel
readily enters the cytosol which makes it a potential candidate
for the delivery of indicator probes into the cytosol.

The Pluronic™ hydrogel (see above) was used to fabricate
nanosensors for fluorescent imaging of physiological pH
values.** Features include (a) very small diameters (12 nm);
(b) biocompatibility due to the use of a hydrogel kind of
material, and (c) the lack of toxicity. The nanosensors were
incorporated into an agar film to enable continuous monitoring
of the pH value of bacterial cultures, and thus of their growth.
Dually responding nanosensor particles were reported that were
prepared from an organic-inorganic composite (Pluronic™ rein-
forced with silica) and used for simultaneous imaging of oxygen
and pH in the cellular cytosol.®® Fig. 1 shows a schematic of
the preparation of the dual nanosensor for oxygen and pH, the
architecture of the NPs, and the chemical structures of the probes
used. Other multiple (bio)sensors, ie. sensors capable of two or
more analytes simultaneously have been reviewed,** but only a
moderate fraction of them makes use of nanomaterials.

Nanogels (like NPs) are of interest in being extremely soft
materials that take up water in fraction between 10 and 90%. The
gels are well permeable to hydrophilic species and can be made
fluorescent by simple labeling with inert labels and made responsive
by attaching a fluorescent probe. Nanogel particles are well suited to
image pH values inside cells.*® In a method termed CLARITY,
nanoporous hydrogel-hybridized forms of intact mouse brain were
prepared and crosslinked to a three-dimensional network of hydro-
philic polymers.*® They are optically transparent and permeable
macromolecules. Tissue imaging is said to reveal local circuit wiring,
cellular relationships, subcellular structures, protein complexes,
nucleic acids and neurotransmitters. CLARITY also enables intact-
tissue in situ hybridization, immunohistochemistry in non-sectioned
tissue, and antibody labelling. Fluorophore-labeled polymeric nano-
gels for sensing temperature (7) have attracted much interest
because they pave the way to sense T inside cells. The topic has
been extensively reviewed.*”

This journal is © The Royal Society of Chemistry 2015
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Tetrakis(pentafluorophenyl)
porphyrin (TFPP)

Platinum(ll) tetraphenyl
tetrabenzoporphyrin (PtTPTBP) (FITC)

Fluorescein isothiocyanate

Fig. 1 Structure of a nanosensor for dual sensing of oxygen and pH. Its
core consists of Pluronic F-127, a nonionic, surfactant triblock copolymer
composed of a central hydrophobic chain of poly(propylene oxide) flanked
by two hydrophilic chains of poly(ethylene glycol) (PEG) and reinforced
with silica. The NPs are capped with PEG. The oxygen probe (PtTBTBP) and
the reference fluorophore TFPP are located in the core, and the pH probe
(FITC) is conjugated to the terminal ends of the PEG capping. Reproduced
from ref. 33 with permission (2014) of the Am. Chem. Soc.

3.3. Hydrophobic organic polymers

Polystyrene nanoparticles (PS-NPs) are highly hydrophobic and
can be doped with apolar fluorophores with emission peak
wavelengths that range from the near UV to beyond 1000 nm.
Their color, decay times and size also are widely tunable.
Doping with lipophilic materials is preferred because ionic
probes are poorly soluble in hydrophobic NPs from which the
probes tend to leach out. As in all kinds of NPs for use in
imaging, any fluorescence occurring at below 500 nm is inter-
fered by the autofluorescence of biomatter. An (organic) dopant
fluorophore can photobleach if exposed to strong laser light.
PS-NPs are fairly biocompatible (i.e., not harmful to cells and
tissue), fairly well cell permeable, nontoxic, and their excretion
is slow. If placed inside cells, they are only slowly coated by
intracellular proteins and hardly attacked by the immuno-
system. The modification of their surface is limited to certain
functional groups. Functionalities (such as amino groups) are
best introduced by the addition of co-reagents containing such
groups to the monomer before starting emulsion polymeriza-
tion. Post-modification and additional coating are rather diffi-
cult. PS-NPs do not measurably swell in water and do not
readily aggregate, but this depends on their charge and zeta
potential. One of the first nanomaterials for sensing purposes
consisted of (pH-insensitive) fluorescent PS beads coated with
polyaniline whose absorbance is pH dependent over a large
range of pH values. Depending on the actual pH value, the
coating screens off the emission of the beads.*® PS-NPs are well
permeable to gases but impermeable to charged species includ-
ing proteins. Particles with an average diameter of 85 nm were
loaded with an oxygen-quenchable luminescent ruthenium
complex and then used to image oxygen inside cells following
2-photon excitation.*

This journal is © The Royal Society of Chemistry 2015
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Polyacrylonitrile (PAN) NPs can be doped with fluorophores
with emission wavelengths ranging from 300 to 1000 nm,
preferably with hydrophilic dyes. Color, decay times and size
widely tunable. Beads and aggregates of >300 nm in size cause
light scattering. PAN is fairly biocompatible (not harmful to
cells and tissue) and fairly well cell permeable, nontoxic, easily
excreted but slowly coated by intracellular proteins. It is hardly
attacked by the immunosystem. Its surface is rather inert and
cannot be readily modified once the particles have been
formed, usually by precipitation by adding water to a solution
of PAN in dimethylformamide. PAN particles do not swell but
there is a tendency to aggregation. Fluorophore-doped PAN-NPs
were applied, for example, to referenced imaging of pH and
temperature with sub-um spatial resolution.*’

Biocompatible fluorescent organic NPs with tunable photo-
luminescence were obtained via one-pot oxidation of poly-
dopamine and subsequently utilized for cell imaging,*" and
water dispersible red fluorescent organic NPs for use in cell
imaging were reported by Luo.*” Quantum-dots conjugated to
dopamine function as redox coupled assemblies and can be
applied to in vitro and intracellular pH sensing."® Other polymers
include poly(vinyl butyral)** that was labeled with a perylene dyes
that is easily taken up without coating and does not display
in vitro cytotoxicity on human cancer cells. Hu et al.*’> have
introduced a class of organic nanocomposites with function-
alities for both fluorescence imaging and magnetic therapy.
Magnetic NPs (5 nm in diameter) were incorporated into the
amphiphilic block copolymer poly(styrene-b-allyl alcohol) that
was labeled with pyrene. The fluorescence of the resulting NPs
(200 nm i.d.) was exploited when imaging cancer cells, while
magnetically controlled mechanical damage of cell membranes
represents a way for cancer cell treatment referred to as magne-
tolytic therapy. Magnetic field induced heating may pave, in
future, the way to hyperthermal cancer therapy. This is schema-
tically shown in Fig. 2. For numerous other examples, see
Section 6.

3.4. Semiconducting (organic) polymer dots (P-dots)

These come in addition to more conventional (dyed) NPs such as
those made from polystyrene, polyacrylamide etc. The polymer
usually is prepared from aromatic precursors possessing polymer-
izable double or triple bonds. Particles (as needed for imaging)

Fig. 2 Left: TEM of fluorescent organic nanobeads containing magnetic
NPs. Right: bimodal use of the nanobeads for purposes of imaging cancer
cells (top) and magnetically induced lysis of cell membranes. From ref. 45
with permission (2014) of the Am. Chem. Soc.
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are prepared by either emulsion polymerization or nano-
precipitation.*® Doping with fluorophores is not needed. The
backbone of conjugated polymers behaves like an array of light-
harvesting units that exhibit a larger optical cross section com-
pared to small organic molecule dyes. Photobleaching was not
reported so far. Fine-tuning of the conjugated polymer structure
and the polymeric encapsulation matrix leads to fluorescent
probes with specific spectral properties and targeting capability.
P-dots display strong fluorescence that often extends far into the
NIR, are highly inert and do not swell in water. Little is known
about biocompatibility, internalization, and excretion from tissues.
Their uses in imaging and therapy have been reviewed.*’

Fluorescent nanodots consisting of semiconducting polymer
blends can be attached to peptides (such as chlorotoxin)*® and
then can be used for targeted imaging (of malignant brain
tumors, for example) in clinical diagnosis. By coupling the
pH-indicator fluorescein to P-dots, a material is obtained that
displays two fluorescence peaks, one being pH sensitive, the
other not so that it can acts as an internal reference. Fully
reversible pH sensing was demonstrated® for the pH 5.0 to
8.0 range. Intracellular pH values were determined by imaging
of HeLa cells following the uptake of the P-dots by endocytosis.
Tetraphenylethene-based fluorescent organic NPs undergo
aggregation-induced emission inside cells and this was moni-
tored via cell imaging.* The fluorescence of conjugated polymers,
particularly if anionic, can be quenched by ions such as Cu(n).>*
Semiconducting P-dots (20 to 50 nm) can also serve as photo-
acoustic probes for real-time imaging of reactive oxygen species in
living mice tissue where they accumulate quite readily.

3.5. Carbon dots

Carbon dots (C-dots™?), first reported in 2006, are said to be
clusters of carbon atoms (for definitions see ref. 54) with dia-
meters of typically 2 to 8 nm, but also contain substantial
fractions of oxygen and hydrogen if not nitrogen. They do not
measurably swell in aqueous solution but aggregation was occa-
sionally observed. C-dots can be made strongly fluorescent and
need not be doped or labeled. Their emission color can be tuned
to some extent by varying the experimental conditions of synth-
esis. Both the excitation and emission spectra are very wide and
usually extend from the UV to the red (650 nm), a fact that
virtually excludes their use in multiplexing. A fine review on the
synthesis and photophysical properties (and uses in bioimaging)
of C-dots is available.” It includes the very true statement that
“C-dots have a much more comprehensive definition compared to
graphene quantum dots.” The QYs of C-dots range from 5 to 30%.

Fig. 3 shows the emission spectra of carbon dots at different
excitation wavelengths from 330 to 475 nm. Their strongest
fluorescence is blue, but longwave excitation (at >460 nm)
induces green to yellow emission. A review on the synthesis,
properties and applications of C-dots contains an interesting
section on the origins of their excitation wavelength dependent
emission, and particularly the controversial upconverted lumi-
nescence.’® The emissions also are likely to be pH-dependent.
Single-particle fluorescence intensity fluctuation (“blinking”) has
been reported recently.>” Decay times are in the nanosecond time
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Fig. 3 Wavelength dependence of aqueous solutions of carbon dots in

water at excitation wavelengths between 330 and 475 nm. Reprinted from
ref. 58 with permission (2014) of the Am. Chem. Soc.

regime and do not vary much. The fluorescence of C-dots can be
of the upconversion and the down-conversion type.

C-dots, and carbon nanoparticles in general, can be single-
photon excited and multi-photon excited. C-dot-based inorganic-
organic nanosystems were applied, for example, to two-photon
imaging of pH variation in living cells and tissues.>® C-dots are
fairly well biocompatible (i.e., not harmful to cells and tissue
within a few days), fairly well cell permeable, not known to be
toxic, easily excreted, weakly interacting with proteins, and hardly
attacked by the immunosystem. Functional surface engineering
for purposes of bioconjugation and imaging is more difficult
than in the case of Q-dots but possible.®® They neither swell nor
photobleach. Their fluorescence is pH dependent and quenched
by iodide®" (and probably by other notorious quenchers too).
A recent review covers the subject.®

In terms of synthesis, both top-down and bottom-up
approaches are known. The resulting C-dots, in fact, always
contain substantial fractions of oxygen (up to 50%) and also
nitrogen if a nitrogen-containing substance such as an amino
acid is added during synthesis. And yet, they are often termed -
mainly by Chinese authors - graphene quantum dots even
though graphene by definition consists of C and H only and is
nonfluorescent. Examples where the application of ‘“‘graphenes”
is claimed but materials other than sp>graphenes have been
used include, for example, intracellular fluorescence imaging
with a “graphene”-based fluorescent probe,®* and the use of
highly biocompatible ‘graphene” nanosheets for cellular
imaging.®* A particularly confusing example is represented® by
an article entitled The in vivo and in vitro toxicity of graphene
quantum dots that has nothing to do with graphene (which is free
of oxygen by definition and non-fluorescent). The authors have
prepared the highly fluorescent (!) graphene material by oxidation
(!) and also claim it to possess a particularly high oxygen content (!).

C-dots have been prepared from numerous organic materials
and natural products containing carbon in various form, one
example being®® the preparation of 3 nm blue fluorescent C-dots
from cow milk by heating it to 180 °C for 2 h. The particles can be
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used to image U8?7 cells. If C-dots are doped with nitrogen,®® they
are even more strongly fluorescent. Both hydrophilic and hydro-
phobic C-dots are known. Hydrophilic materials are preferred in
imaging.®” Hydrophobic materials are less often used but also
available by microwave synthesis.°® Raw C-dots are mainly pre-
pared by microwave induced thermal carbonization of molecular
precursors such as glucose (and other carbohydrates), citrate,
(poly)glycols, often in the presence of a nitrogen source (such as
tryptophan or EDTA). Surface passivated (und, therefore, bright)
C-dots can be directly synthesized by microwave induced pyrolysis
of glycerol in the presence of 4,7,10-trioxa-1,13-tridecanediamine.®
C-dots can also be isolated from soot, or prepared from glucose
with P,Os at room temperature.”® C-dots may be rendered to
more strongly fluorescent by alkali or acid-assisted ultrasonic
treatment.”*

Photoluminescent C-dots have also been produced by laser
ablation of graphite followed by oxidation with nitric acid and
functionalization with diamine-terminated poly(ethylene glycol).”>
They show multicolor fluorescence.”” C-dots can be produced
inexpensively and on a large scale. Fluorescence is conferred or
improved by chemical treatment (or passivation) of the surface, for
example by oxidation, doping with inorganics, or capping. Water
dispersible C-dots with tunable photoluminescence can also be
synthesized”* via hydrothermal oxidation of nanodiamonds and
were subsequently utilized for cell imaging. Carbon nanoparticles
(10 nm i.d.) for use in fluorescent bioimaging can be obtained
now”” on the milligram to gram scale by carbohydrate carboniza-
tion (even though in our experience this method is difficult to
reproduce not the least because of an inadequate experimental
part). Table 1 gives examples of CNPs (prepared on the gram 