Issue 3, 2015

Uncovering the structures of modular polyketide synthases

Abstract

Covering: up to 2014

The modular polyketide synthases (PKSs) are multienzyme proteins responsible for the assembly of diverse secondary metabolites of high economic and therapeutic importance. These molecular ‘assembly lines’ consist of repeated functional units called ‘modules’ organized into gigantic polypeptides. For several decades, concerted efforts have been made to understand in detail the structure and function of PKSs in order to facilitate genetic engineering of the systems towards the production of polyketide analogues for evaluation as drug leads. Despite this intense activity, it has not yet been possible to solve the crystal structure of a single module, let alone a multimodular subunit. Nonetheless, on the basis of analysis of the structures of modular fragments and the study of the related multienzyme of animal fatty acid synthase (FAS), several models of modular PKS architecture have been proposed. This year, however, the situation has changed – three modular structures have been characterized, not by X-ray crystallography, but by the complementary methods of single-particle cryo-electron microscopy and small-angle X-ray scattering. This review aims to compare the cryo-EM structures and SAXS-derived structural models, and to interpret them in the context of previously obtained data and existing architectural proposals. The consequences for genetic engineering of the systems will also be discussed, as well as unresolved questions and future directions.

Graphical abstract: Uncovering the structures of modular polyketide synthases

Associated articles

Article information

Article type
Review Article
Submitted
22 jul 2014
First published
14 okt 2014

Nat. Prod. Rep., 2015,32, 436-453

Author version available

Uncovering the structures of modular polyketide synthases

K. J. Weissman, Nat. Prod. Rep., 2015, 32, 436 DOI: 10.1039/C4NP00098F

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements