Issue 30, 2024

Magnetic-actuated hydrogel microrobots with multimodal motion and collective behavior

Abstract

Magnetic-actuated miniature robots have sparked growing interest owing to their promising potential in biomedical applications, such as noninvasive diagnosis, cargo delivery, and microsurgery. Innovations are required to combine biodegradable materials with flexible mobility to promote the translation of magnetic robots towards in vivo application. This study proposes a biodegradable magnetic hydrogel robot (MHR) with multimodal locomotion and collective behavior through magnetic-assisted fabrication. The MHRs with aligned magnetic chains inside their structures have more significant maximum motion speeds under rotating magnetic fields than the robots without magnetic alignment. By reconfiguring the external magnetic fields, three types of stable motion modes (tumbling, spinning, and wobbling modes) of the individual MHRs can be triggered, while flexible conversion can be achieved between each motion mode. The motion mechanism of each motion mode under diverse rotating magnetic fields has been analyzed. The collective behavior of the MHRs, which is triggered by the magnetic dipole force, can enhance the motion performance and pass through sophisticated terrains. Furthermore, the experimental results demonstrate that the assembled MHRs can execute complicated tasks such as targeted cargo delivery. The proposed MHRs with multimodal locomotion and assembled behavior show effective motion efficiency, flexible maneuverability, and remarkable targeting ability, providing a new choice for magnetic robots in biomedical applications.

Graphical abstract: Magnetic-actuated hydrogel microrobots with multimodal motion and collective behavior

Supplementary files

Article information

Article type
Paper
Submitted
11 mar 2024
Accepted
21 jun 2024
First published
21 jun 2024

J. Mater. Chem. B, 2024,12, 7440-7449

Magnetic-actuated hydrogel microrobots with multimodal motion and collective behavior

X. Chen, C. Tian, H. Zhang and H. Xie, J. Mater. Chem. B, 2024, 12, 7440 DOI: 10.1039/D4TB00520A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements