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Local Changes in Protein Filament Properties Drive
Large-Scale Membrane Transformations Involved in En-
dosome Tethering and Fusion

Ashesh Ghosh,a‡ Andrew J. Spakowitz,a,b,c

Large-scale cellular transformations are triggered by subtle physical and structural changes to in-
dividual biomacromolecular and membrane components. A prototypical example of such an event
is the orchestrated fusion of membranes within an endosome that enables transport of cargo and
processing of biochemical moieties. In this work, we demonstrate how protein filaments on the endo-
somal membrane surface can leverage a rigid-to-flexible transformation to elicit a large-scale change
in membrane flexibility to enable membrane fusion. We develop a polymer field-theoretic model
that captures molecular alignment arising from nematic interactions with varying surface density and
fraction of flexible filaments, which are biologically controlled within the endosomal membrane. We
then predict the collective elasticity of the filament brush in response to changes in the filament
alignment, predicting a greater than 20-fold increase of the effective membrane elasticity over the
bare membrane elasticity that is triggered by filament alignment. These results show that the en-
dosome can modulate the filament properties to orchestrate membrane fluidization that facilitates
vesicle fusion, providing an example of how active processes that modulate local molecular properties
can result in large-scale transformations that are essential to cellular survival.

1 Introduction

Cellular self-organization and large-scale orchestrated transfor-
mations are driven by coordinated biophysical, mechanical, and
dynamical processes involving numerous biomacromolecules and
biological membranes. A fundamental challenge in understand-
ing and predicting cellular self-organization and dynamics stems
from the need to determine how molecular components (e.g.
RNA, proteins, lipids) leverage subtle physical changes to drive
dramatic cellular transformations across different length and time
scales1,2,3,4. The complex interplay of microscopic chemical
events in membranes, including lipid-raft formation5, coupled
lipid-protein interactions6, dynamin-driven membrane fission7,
clathrin-mediated endocytosis8,9, and active transport of fluid
across membranes10,11, determine critical biological fates such
as cell shape and function12. Studies show membrane protein in-
teractions and protein absorption can alter the local curvature of
a membrane and consequential for endocytosis, vesiculation and
tubulation13,14. Coordinated membrane fusion enables the trans-
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port of critical cargo and biochemicals to and from the cell15,
which is an essential biological process involving subtle biophysi-
cal events.

In this work, we develop a theoretical model for the physical
transformations in the endosomal membrane that underlie mem-
brane fusion and transport, which serves as a prototypical exam-
ple of cellular self-organization and dynamics. Recently, allosteric
changes to the early endosome tether protein EEA1 (Fig. 1) has
been shown to play an important role in mechanical pulling of
membranes to close spatial proximity upon binding with a vesicle
bearing small GTPase Rab5 in its GTP bound form Rab5(GTP).
EEA1 is a coiled-coil dimeric molecule with a contour length of
L∼222± 26 nm and a persistence length of lEEA1

p ∼246± 42 nm.
EEA1 predominantly exists in “extended” or rigid conformation
(Fig. 1A) in its free N-terminus unbound form16. Upon binding
to Rab5(GTP) the contour length essentially remains the same.
However, the molecule shifts to a more “flexible” conformation
(Fig. 1B) with an average end-to-end distance of ∼122± 50 nm,
coinciding with a persistence length of lEEA1(GTP)

p ∼74±3 nm16.

Changes in the population density of the structurally rigid (or
flexible) EEA1 filaments is thought to play a crucial role in me-
chanical pulling of membranes via thermal and active enzymatic
fluctuations present in the cellular media. Moreover, EEA1 is
present in high density patches on the membrane surface and thus
forms a switchable polymer brush layer17. It is to be noted that
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A

B

Fig. 1 Schematic of an endosomal membrane with EEA1 brush layer. The
A and B images show the collective behavior of the brush layer in the pre-
dominantly extended and predominantly collapsed states on the surface
of a patch of elastic membrane. Yellow and Red colored polymers are
in the collapsed flexible and extended rigid conformations, respectively.
The effective elastic rigidity of the membrane and brush is higher in the
aligned state of polymer brush layer (panel A). Molecular-level changes
that transform polymers from extended to flexible conformation (red →
yellow) alter membrane rigidity and induce large length-scale fluctuations.

such a structure-driven entropic transition is not unique to EEA1-
tether system, but common in coil-coiled tether proteins, such
as GCC185 that binds to Rab9(GTP)18. Hence, these long coil-
coiled tethers can act as a mechanical switch in bringing distant
membranes to physical proximity to facilitate fusion16,19.

Our work develops a molecular-level model that captures the
collective alignment within an EEA1 brush with varying fractions
of flexible and rigid protein filaments. Furthermore, we provide
a prediction for how the collective brush layer alters the effec-
tive elasticity of the membrane and makes it more susceptible for
fusion. More concretely, we construct a general thermodynamic
model of two types of semiflexible polymers in a solvent and spe-
cialize to our case to determine how nematic interactions that
originate from hydrophobic moieties along the chain backbone of
coil-coiled proteins dictate chain alignment and alter the collec-
tive membrane rigidity. The properties and phenomena focus on
molecular alignment within EEA1 tethered system. Furthermore,
this work provides fundamental insight into how the cell can con-
trol molecular properties of specific biomacromolecules to elicit
large-scale transformations involved in major biological events.

2 Model and Theory
We consider an incompressible polymer solution of total volume
V , with ns solvent molecules with molecular volume vs, nR

p rigid
polymer chains with contour length LR and cross-sectional area
AR and nF

p flexible polymer chains with contour length LF and
cross-sectional area AF . The polymer chains are modeled using
the wormlike chain model, which describes the polymer chains

as inextensible elastic threads that are subjected to thermal fluc-
tuations20,21. The polymer configuration of the ith polymer of
type α ∈ [R,F ] at arc-length position s (note, s=0 at one end and
s=Lα at the opposite end) is defined by the space curve r⃗α

i (s),
and the local tangent vector u⃗α

i (s) = ∂ r⃗α
i (s)/∂ s gives the tangent

orientation of the monomer segment at s. Here and in the follow-
ing discussion, the index α indicates the polymer species, where
R and F signify rigid and flexible polymer types, respectively. In-
extensibility is strictly enforced by ensuring that |⃗uα

i (s)| = 1 for
all configurations of the system. The position of the jth solvent
molecule is given by r⃗ j. The bending rigidity of the semiflexi-
ble polymers are given by their respective persistence lengths lα

p ,
and we also express the chain length in dimensionless units as
the number of Kuhn lengths Nα = Lα/bα , where the Kuhn length
bα = 2lα

p gives the statistical segment length of a polymer.

The system energy includes contributions for polymer bending
deformation, solvent-polymer mixing enthalpy captured through
effective Flory-Huggins χ-parameters22, and nematic alignment
free energy of polymer chains through an effective Maier-Saupe
interaction23,24. The total energy is given by

βE = ∑
α∈[R,F ]

{ nα
p

∑
i=1

lα
p

2

∫ Lα

0
ds
(

∂ u⃗α
i (s)
∂ s

)2

+χα

∫
d⃗r φ̂s(⃗r)φ̂ α

p (⃗r)−
aα

2

∫
d⃗r Ŝα (⃗r) : Ŝα (⃗r)

}

+χRF

∫
d⃗r φ̂

R
p (⃗r)φ̂

F
p (⃗r)−aRF

∫
d⃗r ŜR(⃗r) : ŜF (⃗r), (1)

where φ̂s(⃗r) and φ̂ α
p (⃗r) respectively define the local dimensionless

density (volume fraction) of the solvent and polymer molecules
of type α at spatial location r⃗, and Ŝα (⃗r) is the tensorial nematic
order parameter density of state α at r⃗ 25,26,27. Defining a gen-
eralized volume fraction in terms of real spherical harmonics28

allows us to write the thermodynamic energy in a consolidated
form as done in Ref.25 for a one-component polymer system (de-
tails in Appendix, sec. 5.1-5.4). Specifically this allows us to rep-
resent both the scalar volume fraction and the tensorial nematic
order-parameter field using the same level of description in terms
of spherical-harmonic weighted density fields. In the appendix,
we write the canonical partition function Z , followed by a series
of standard polymer field-theoretic transformations22. Using the
saddle-point approximation22, we write the homogeneous mean-
field free energy density, β f0≡ βF/V =−V−1 logZ of the system
as

β f0 =
1−φp

vs
log(1−φp)+ ∑

α∈[R,F ]

{
φ α

p

Lα Aα

logφ
α
p

+χα φ
α
p (1−φp)−

aα

3
(φ α

p )
2m2

α +
φ α

p

Lα Aα

logqα

}

+χRF φ
R
p φ

F
p − 2aRF

3
φ

R
p φ

F
p mRmF , (2)

where φ α
p is the bulk volume fraction of polymer α (α ≡ species
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index), and the total polymer volume fraction is φp = φ
R
p + φ

F
p .

Conceptually, the nematic order-parameter density Ŝ(⃗r) trans-
forms to the bulk volume fraction φp multiplied by the ne-
matic order parameter m in the mean-field treatment. The ne-
matic order parameter mα of polymer type α is defined as mα =
1

Lα

∫ Lα

0
ds
〈
P2(uα

z (s))
〉

0α
where, P2(x) = (3x2 − 1)/2 is the Legen-

dre polynomial of order 2. The precise structure of P2(x) origi-
nates from the equivalence of the Maier-Saupe form of the ne-
matic order parameter and the definition of our generalized vol-
ume fraction, since

(⃗u1u⃗1 − I/3)i j (⃗u2u⃗2 − I/3)i j =
2
3

2

∑
m=−2

Y m
2 (⃗u1)Y m

2 (⃗u2)

=
2
3

P2(⃗u1 · u⃗2).

The average ⟨. . .⟩0α
is taken with respect to the single-chain mean

field energy, defined by

βE α
0 =

∫ Lα

0
ds

{
lα
p

2

(
∂ u⃗α (s)

∂ s

)2
− γα

[
(uα

z (s))
2 − 1

3

]}
, (3)

where γα = (aα φ α
p mα Aα +aRF φ

β
p mβ Aβ ) gives the molecular field

strength for the α-type polymer (note, if α = R then β = F and
vice versa). The single-chain partition function qα of polymer α

is evaluated from a Boltzmann-weighted sum over all polymer-
chain conformations with respect to the mean-field energy βE α

0 .
We note that in the absence of any molecular quadrupole field
interactions (a → 0 and q → 1 limit), Eq. 2 reduces to a multicom-
ponent Flory-Huggins (FH) mean-field theory22. This FH free
energy corresponds to the isotropic state of the multicomponent
system.

In this work, we assume the volume fractions in the isotropic
and nematic states are the same in order to model transitions in
the filament brush for a fixed membrane surface coverage, and
we assume aR = aF = aRF = a. With these assumptions, we write
the Helmholtz free energy of the nematic phase relative to the
isotropic phase for the alignment strength â = aφpLA to be

β∆ f0 =
â
3
( fRmR + fF mF )

2 − fR logqR − fF logqF , (4)

where fα = φ α
p /φp. The Maier-Saupe parameter â should be

understood as altering the surface coverage of filaments on the
membrane. The stability of the nematic phase is determined by
finding the curvature of β∆ f0 with respect to the overall vari-
ational parameter, defined through the relation ⟨m⟩ = fRmR +

fF mF . Finally, we note that the end-to-end distance can be calcu-
lated from the tangent correlation functions, similar to Ref.25,29.

Fluctuations around the mean-field state22 of the polymer
brush layer predict the Frank elastic energies of the system that
contribute to the effective membrane bending rigidity. Frank elas-
tic energies provide energetic contributions of the polymer layer
with respect to the aligned state in terms of the normal modes
of deformation such as bend, twist, and splay25,30,31. Consider-
ing the Canham-Helfrich Hamiltonian32,33 using a Monge-Gauge
representation34, we note the following relation in the presence

Fig. 2 A membrane patch is shown to schematically show normal at any
point on the membrane that holds a polymer. The polymer structural
axis is shown in yellow solid line and the polymer end-to-end distance
along the preferred direction of alignment in its extended state is shown
in cyan double-headed arrow. Construction of unit normal n̂P at point P≡
(x,y,h(x,y)) is demonstrated as the normalized cross product of

−→
PPx and−→

PPy. The schematic shows defined quantities related to the membrane
geometry that are further used in the appendix.

of a polymer brush layer (for details see, Appendix, sec. 5.5):

κ
eff
mem = κmem +Ksplay

√
R2
∥ ≥ κmem, (5)

where only the splay modulus Ksplay is seen to contribute to alter-
ing the effective membrane bending modulus, and R2

∥ denotes the
mean-squared end-to-end distance of the polymer along the ne-
matic alignment direction (schematically shown in Fig. 2). Previ-
ous work35 determines the membrane elasticity to be coupled to
the lipid-bilayer splay modulus, which in spirit is similar to what
we obtain. However, our single layer membrane elasticity is cou-
pled to splaying of the outer protein-brush layer, and the nematic
state of the brush layer becomes crucial for determining the effec-
tive membrane rigidity. The stretching modulus of the membrane
remains unchanged, since modes of deformation that are affected
by the brush layer are associated with directions that are predom-
inantly perpendicular to the in-plane stretching modes. For our
case of two different polymers, the effective bending modulus is
determined to be the population average ∼ Ksplay

√
R2
∥. Details

of a microscopic theory of how fluctuations around the mean-
field solution can be used to calculate Frank-elastic constants for
semiflexible polymers is given in Ref.25. Equation 5 suggests
that when Ksplay =0 in the absence of nematic alignment, the ef-
fective membrane elasticity comes from internal rigidity of the
lipid bilayer. Hence, thermal (and perhaps active) fluctuations
present in the system result in larger height fluctuations of the
membrane36 (cf. Fig. 1B). Under conditions of alignment of the
polymer molecules, Ksplay >0, and effective membrane elasticity
increases. Physically, this corresponds to suppressed height fluc-
tuations37 of the membrane due to the extended configurations
within the polymer brush layer (cf. Fig. 1A).

3 Results and Discussion.
We show results for the two types of polymers with variable di-
mensionless chain length Nα = L/2lα

p , where the contour length
and persistence lengths are set by experimental measurements
of EEA1 filaments. This gives the dimensionless chain lengths for
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Fig. 3 Critical strength of aligning field as a function of the fraction of
rigid polymer (lower X-axis) is plotted. The order parameter variation is
shown for three states corresponding to fR = 0.04,0.50 and 0.96 respec-
tively [blue line is mR (rigid polymers), orange is mF (flexible polymers)
and the black dashed line follows ⟨m⟩].

the rigid and flexible limit to be Nrigid = 0.50 and Nflexible = 1.50 re-
spectively. The analysis in Ref.25 suggests N ≤ 10 demarcates the
semiflexible polymer regime for nematic interactions. Hence both
the “rigid” and “flexible” structures of EEA1 should be thought of
as relatively rigid and relatively flexible cases of semiflexible poly-
mers. We also set all Maier-Saupe parameters aα to be the same
and cross-sectional area is considered to be the same for EEA1
protein in its extended and flexible states. We think of a as an ef-
fective parameter (in the same spirit as the effective Flory Higgins
parameter χ) that embodies all the complex physical interactions
between chains within the polymer brush layer. Hence, the ef-
fective alignment strength γα depends on the polymer grafting
density on a membrane patch, the degree of alignment, and the
hydrophobic interactions between chemical groups present on the
EEA1 polymer backbone, where increased hydrophobicity leads
to increased a. We note that for a fixed composition (i.e. fractions
of rigid and flexible polymers) transitioning to a liquid-crystalline
phase, the nematic order parameter for the two polymers exhibit
a first-order phase transition.

The main plot of Fig. 3 shows the field strength at the ne-
matic transition âc as a function of fraction of rigid polymers fR.
The transition field strength âc systematically decreases with in-
creasing fR, indicating the system transitions to a nematic state
at lower effective strength of alignment interactions. Phase dia-
grams for the three states [ fR = 0.04 (A), 0.50 (B), and 0.96 (C)]
showing the nematic order parameters for the flexible and rigid
polymers (mF and mR, respectively) are given in the inset plots
of Fig. 3. The two colors in the inset figures represent mR (rigid,
blue) and mF (flexible, orange). The population-weighted aver-
age nematic order parameter is shown in black dashed line. The
limit of stability of the nematic phase âs is shown as the dots in
the inset phase diagrams. Both the rigid and flexible polymers ex-
ist in the isotropic state with mα = 0 for a<as. The polymer brush
layer exhibits nematic alignment for a>as, resulting in non-zero

C

B

A

Fig. 4 Mean-squared end-to-end distance normalized by the squared
contour length of the polymer chain as a function of aligning field strength
for the three states in Fig. 3. Dotted line represents an isotropic state and
solid and dashed lines represent ⟨R2

∥⟩ (along the aligning field) and ⟨R2
⊥⟩

(⊥r to the aligning field) respectively [blue ≡ rigid and orange ≡ flexible].

nematic ordering for both rigid and flexible polymers.
The isotropic state of the system exhibits orientational symme-

try, such that the mean-squared end-to-end distance has equiv-
alent contributions from all directions25,29. Upon transitioning
to the nematic state, the broken symmetry of correlation lengths
along parallel and perpendicular to the field directions result
in an ‘elongated’ polymer along the nematic-director direction25

(i.e. perpendicular to the membrane). We show the end-to-end
distance as a function of aligning field strength for three repre-
sentative states in Fig. 4. For â< âc, we obtain a single end-to-end
distance in the two directions, and at â= âc, there is a discontinu-
ous jump associated with elongation along the parallel direction
and retraction along the perpendicular direction. With increasing
field strength, the polymers become more elongated along the
nematic director direction, and perpendicular fluctuations mono-
tonically decrease. The limit of high strength of alignment corre-
sponds to a rigid rod-like state, where the end-to-end distance in
the director direction (cf. Fig. 2) approaches the contour length
of the polymer, i.e. ⟨R2

∥⟩ → L2.
Within the mean-field approximation, we now consider free en-

ergies of the system as given by the purely nematic energy density
in Eq. 4. The order parameter of the entire system can be given as
⟨m⟩, and variational optimization of the free-energy density as a
function of the order parameter gives the optimal value of ⟨m⟩ for
a particular state. We plot the excess nematic free energy density
in Fig. 5A for the three defined states for a fixed â = 27. As we
note from Fig. 3, state A has âc > 27, meaning the system would
be in isotropic state and variational minimization of free energy
predicts the system resides at ⟨m⟩0 = 0, as noted by the circle.
For both state B and C, Fig. 3 states â should produce a nematic
state (⟨m⟩0 > 0), which is shown in Fig. 5. We note that as the
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B
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(A)

(B)

C B A

Fig. 5 The top plot (A) shows the change in free energy with respect
to the isotropic state is shown as a function of average order parameter
variation for the three states of Fig. 3 corresponding to rigid-polymer
fractions of 0.04, 0.50 and 0.96 (A → B →C) for a fixed â = LAaφp = 27.
The bottom plot (B) shows the ratio of effective membrane rigidity as a
function of aligning field strength for the three states.

fraction of rigid polymers increase from A → B → C, ⟨m⟩0 mono-
tonically grows from the isotropic to the nematic state towards
⟨m⟩0 →1 indicating perfectly aligned polymer configurations. As
the fraction of rigid polymers increase, the nematic free energy of
the system decreases indicating stabilizing forces in the system.
With the same surface coverage of EEA1 brush-like polymers on
a membrane patch, we anticipate a decreasing free energy as the
brushes exist in the rigid state.

We assign values of the EEA1 contour length L = 222 nm,
cross-sectional area A = 3.1 nm2 17,38, and EEA1 volume frac-
tion φp = 0.0116,39. The bare membrane bending elasticity is
set to κmem = 5kBT , which is within the measured physiological
range40. These parameters permit the evaluation of the effective
membrane rigidity for the three rigid-polymer fractions shown
in Fig. 5A. Figure 5B gives the ratio of the effective membrane
rigidity to the bare-membrane rigidity κeff

mem/κmem as a function
of aligning field strength. For â< âc in each state, the effective
membrane elasticity κeff

mem=κmem, since the splay modulus Ksplay
of the filament brush is zero in the isotropic state. At the nematic
transition â= âc, the effective membrane elasticity undergoes a
first-order transition associated with the sudden increase in the
nematic ordering. Further increase in the aligning field strength
leads to a greater than 20-fold increase in the effective elasticity of
the membrane and the EEA1 brush, leading to an overall picture
where filament alignment dramatically modulates the membrane
elasticity.

Notably, this dramatic change in the effective membrane elas-
ticity is enabled by the collective nematic transition. The per-
sistence lengths of the rigid and flexible states have a ratio of
lEEA1
p /lEEA1(GTP)

p ≈3.3, indicating a limiting ability for a single fil-
ament to physically manipulate exterior cargo. However, the col-
lective elastic behavior of the EEA1 brush would facilitate large-
scale property changes that facilitate large deformations of the
membrane necessary for membrane fusion.

4 Conclusion
In conclusion, we provide a theoretical model for collective tran-
sitions in the EEA1 brush on an endosomal membrane, and our
analyses reveal how large-scale membrane fluctuations that are
essential for membrane fusion are controlled by subtle physical
and structural changes of the molecular constituents. Our work
suggests a possible mechanism of membrane fusion that relies
on membrane fluidity (or reduced mechanical rigidity), which is
modulated by the brush-layer protein filaments. Extended EEA1
molecules that behave as effective rod-like polymers, increases
the effective elastic rigidity of membrane through their collec-
tive alignment within the protein brush. Conformational changes
of EEA1 molecules (from a rigid to a flexible, floppy state) help
physical proximity due to less steric hindrance and reduces the
mechanical rigidity, allowing fusion to take place.

Further experimental studies to understand and characterize
the grafting density of EEA1 on a membrane patch, the fraction
of rigid and flexible states in a region of the membrane, role of
the Rab5 concentration and interactions between the two poly-
mer strands in EEA1 helix in rigid and flexible states are needed
to crucially identify the parameter space of effective nematic in-
teraction between the brush layer. Nevertheless, the qualitative
predictions suggest dramatic changes in membrane rigidity that
can essentially “solidify” a membrane with small change in the
effective interaction or fraction of rigid vs. flexible polymers.

Our theoretical model and subsequent analyses addresses the
role the coil-coiled dimeric structure of EEA1 protein in the me-
chanics of the rigid-flexible transition, kinetics of Rab5-GTP bind-
ing, ATP→ADP hydrolysis and Rab5-GDP unbinding, and the
molecular mechanisms that are responsible for rigid-to-flexible
conformational change. Our results have broad impact beyond
the membrane-fusion problem. The model demonstrates how
biophysical processes that happen on large, collective length and
time scales can originate from orchestrated chemical and physi-
cal events at much finer scales, which is a general principle that
underlies a range of critical life processes.

5 APPENDIX

5.1 Detailed Derivation of the Polymer Field Theory of a
three component polymer nematic solution

5.1.1 System Definition

We consider an incompressible polymer solution of total volume
V , with ns solvent molecule with volume vs, nR

p polymer chains
with contour length LR and cross-sectional area AR and nF

p poly-
mer chains with contour length LF and cross-sectional area AF .
The polymer chains are modeled using the wormlike chain model,
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which describes the polymer chains as inextensible elastic threads
that are subjected to thermal fluctuations. The polymer configu-
ration of the iα th polymer of type α ∈ [R,F ] at arclength posi-
tion s (note, s = 0 at one end and s = Lα at the opposite end)
is defined by the space curve r⃗α

i (s), and the local tangent vector
u⃗α

i (s) = ∂ r⃗α
i (s)/∂ s gives the orientation of the monomer segment

at s. Inextensibility is strictly enforced by ensuring that |⃗uα
i (s)|= 1

for all configurations of the system. The position of the jth sol-
vent molecule is given by r⃗ j. The bending rigidity of the semi-
flexible polymers are given by their respective persistence lengths
lα
p , and we also express the chain length in dimensionless units as

the number of Kuhn lengths Nα = Lα/bα , where the Kuhn length
bα = 2lα

p gives the statistical segment length of a polymer.
The system energy includes contributions for polymer deforma-
tion, solvent-polymer mixing, and nematic alignment of polymer
chains and is given by the total energy,

βE = ∑
α∈[R,F ]

{ nα
p

∑
i=1

lα
p

2

∫ Lα

0
ds
(

∂ u⃗α
i (s)
∂ s

)2
+χα

∫
d⃗r φ̂s(⃗r)φ̂ α

p (⃗r)

−aα

2

∫
d⃗r Ŝα (⃗r) : Ŝα (⃗r)

}

+χRF

∫
d⃗r φ̂

R
p (⃗r)φ̂

F
p (⃗r)−aRF

∫
d⃗r ŜR(⃗r) : ŜF (⃗r), (6)

where φ̂s and φ̂ α
p are respectively the local dimensionless density

(volume fraction) of the solvent and polymer molecules of type α,
and Ŝα is the tensorial nematic order parameter density of state
α. These local order parameters are given by

φ̂s(⃗r) = vs

ns

∑
j=1

δ (⃗r− r⃗ j) (7)

φ̂
α
p (⃗r) = Aα

nα
p

∑
i=1

∫ Lα

0
dsδ (⃗r− r⃗α

i (s)) (8)

Ŝα (⃗r) = Aα

nα
p

∑
i=1

∫ Lα

0
dsδ (⃗r− r⃗α

i (s))
(

u⃗α
i (s)⃗u

α
i (s)−

I
3

)
. (9)

For the subsequent analyses, we define a generalized volume frac-
tion (tensor) that incorporates local orientational order, defined
as25

φ̂lα ,mα
(⃗r ) = Aα

√
4π

2lα +1

nα
p

∑
i=1

∫ Lα

0
dsY mα

lα
(⃗uα

i (s))δ (⃗r− r⃗α
i (s)). (10)

Y mα

lα
is the real-valued spherical harmonic (i.e. the tesseral spher-

ical harmonic) for state α, given by,

Y mα

lα
=


√

2(−1)mα Im
[
Y |mα |

lα

]
for mα < 0

Y 0
lα for mα = 0
√

2(−1)mα Re
[
Y mα

lα

]
for mα > 0

(11)

where Y mα

lα
is the standard spherical harmonic (complex valued).

We note that the polymer volume fraction φ̂ α
p = φ̂ α

0,0, and the ne-

matic order parameter Ŝα can be written in terms of φ̂
mα

2 . Details
are provided in Ref.25. With this definition, we rewrite the system
energy as

βE = ∑
α∈[R,F ]

{ nα
p

∑
i=1

lα
p

2

∫ Lα

0

(
∂ u⃗α

i
∂ s

)2
ds+χα

∫
d⃗r φ̂s(⃗r )φ̂ α

0,0(⃗r )

−aα

3

∫
d⃗r

2

∑
m=−2

[
φ̂

α
2,m(⃗r )

]2
}
+χAB

∫
d⃗r φ̂

R
0,0(⃗r )φ̂

F
0,0(⃗r )

−2aRF

3

∫
d⃗r

2

∑
m=−2

φ̂
R
2,m(⃗r )φ̂

F
2,m(⃗r ) (12)

where the integrand in the last term in Eq. 12 signifies summation
over terms such as, φ̂

−2A
2 (⃗r )φ̂−2B

2 (⃗r ), φ̂
−1A
2 (⃗r )φ̂−1B

2 (⃗r ), . . . and so
on.
The canonical partition function, Z is written as,

Z =
1

ns!nR
p!nF

p !
1

vns
s

1

(LRAR)
nR

p (LF AF )
nF

p

×
∫ ns

∏
j=1

d⃗r j

∫ nR
p

∏
iA=1

D [⃗rR
i ]
∫ nF

p

∏
iF=1

D [⃗rF
i ]∏

r⃗
δ (φ̂s + φ̂

R
0,0 + φ̂

F
0,0 −1)

×
nR

p

∏
iR=1

nF
p

∏
iF=1

∏
sR,sF

δ (|∂sR⃗ rR
i |−1)δ (|∂sF r⃗F

i |−1)exp(−βE) (13)

where ∏
r⃗

δ (φ̂s + φ̂
R
0,0 + φ̂

F
0,0 −1) accounts for the incompressibility

constraint at all locations within the system. The inextensibility of
each polymer chain is enforced by the constraints δ (|∂sα

r⃗α
i |− 1).

The integration over D [⃗rα
i ] implies path integration over all con-

formations of the polymer α. We use the solvent volume vs and
polymer volume Lα Aα as volume scales instead of the de-Broglie
wavelengths cubed, which merely shifts the chemical potential by
a constant quantity and does not affect the thermodynamic be-
havior of our system.

5.1.2 Particle to Field Transformation

Next, we perform a series of field manipulations that enable sys-
tematic approximation of the thermodynamic behavior. For each
instantaneous volume fraction φ̂ , we introduce a volume-fraction
field variable by noting the property25,41

f [φ̂ ] =
∫

Dφ ∏
r⃗

δ
[
φ − φ̂

]
f [φ ] (14)

=
∫

DWDφ exp
{

i
∫

d⃗rW (⃗r )
[
φ̂ (⃗r )−φ (⃗r )

]}
f [φ ],

where W emerges from a Fourier representation of the spatial
delta function. This field manipulation is applied to each
volume-fraction (φ̂s, φ̂ α

0,0, and φ̂ α
2,m), resulting in the introduc-

tion of the conjugate fields Ws, W α
0,0, and W α

2,m. After these field
manipulations, we can write the canonical partition function as,
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Z =
∫

DWs ∏
α∈[R,F ]

{
Dφ

α
0,0DW α

0,0

2

∏
m=−2

DW α
2,mDφ

α
2,m

}
exp

{
i
∫

d⃗rWs(1−φ
R
0,0 −φ

F
0,0)+ i

∫
d⃗r ∑

α∈[R,F ]

W α
0,0φ

α
0,0

+i
∫

d⃗r ∑
α∈[R,F ]

2

∑
m=−2

W α
2,mφ

α
2,m − ∑

α∈[R,F ]

χα

∫
d⃗r φ

α
0,0(1−φ

R
0,0 −φ

F
0,0)+ ∑

α∈[R,F ]

aα

3

∫
d⃗r

2

∑
m=−2

(
φ

α
2,m

)2

−χRF

∫
d⃗r φ

R
0,0φ

F
0,0 +

2aRF

3

∫
d⃗r

2

∑
m=−2

φ
R
2,mφ

F
2,m +ns log

(
zs[Ws]

nsvs

)
+ ∑

α∈[R,F ]

nα
p log

(
zα

p [W
α
0,0,W

α
2,m]

nα
p Lα Aα

)}
(15)

=
∫

DWs ∏
α∈(A,B)

{
Dφ

α
0,0DW α

0,0

2

∏
m=−2

DW α
2,mDφ

α
2,m

}
exp [−βF ] (16)

where we define the single solvent partition function as

zs[Ws] =
∫

d⃗r exp [−ivsWs(⃗r )] (17)

and the single polymer partition functions are written as,

zα
p [W

α
0,0,W

α
2,m] =

∫
D [⃗rα (s)]exp

{
−

lα
p

2

∫ Lα

0

(
∂ u⃗α

∂ s

)2
ds

−iAα

∫ Lα

0
dsW α

0,0(⃗r (s))

−iAα

∫ Lα

0
ds

2

∑
mα=−2

W α
2,m(⃗r (s))

√
4π

5
Y m

2 (u⃗α (s))

}
(18)

The partition function Z has not been subjected to any approx-
imations so far and is not exactly solvable as it is, although it is
amenable to systematic approximations. Below we formulate the
general saddle-point approximation, which determines the ther-
modynamic state within a mean-field (generally inhomogeneous)
and specialize to the homogeneous mean-field approximation.

5.2 Mean Field Approximation

5.2.1 Mean Field Equations

The lowest-order approximation to the canonical partition func-
tion is given by the saddle point, which approximates the func-
tional integrals in Eq. 16 by the maximum term. By setting the
first variation of the argument of the exponential within Eq. 16 to

zero (i.e.
δ (βF )

δ f
= 0 for any arbitrary field f ), we arrive at the

saddle-point equations. We define φ̄ α
0,0 = φ α

p and iW = w for use
in the subsequent analyses. The saddle point equations are given
as

(1−φ
R
p −φ

F
p ) =

vsns

z̄s
exp(−vsw̄s), (19)

−χR(1−2φ
R
p −φ

F
p )+χF φ

F
p + w̄R

0,0 − w̄s −χRF φ
F
p = 0, (20)

−χF (1−φ
R
p −2φ

F
p )+χRφ

R
p + w̄F

0,0 − w̄s −χRF φ
R
p = 0, (21)

2aR

3
φ̄

R
2,m +

2aRF

3
φ̄

F
2,0 + w̄R

2,m = 0 (22)

2aF

3
φ̄

F
2,m +

2aRF

3
φ̄

R
2,m + w̄F

2,m = 0 (23)

φ̄
R
p +

nR
p

z̄R
p

δ z̄R
p

δ w̄R
0,0

= 0 (24)

φ̄
F
p +

nF
p

z̄F
p

δ z̄F
p

δ w̄F
0,0

= 0 (25)

φ̄
R
2,m +

nR
p

z̄R
p

δ z̄R
p

δ w̄R
2,m

= 0 (26)

φ̄
F
2,m +

nF
p

z̄F
p

δ z̄F
p

δ w̄F
2,m

= 0 (27)

Next, we specialize our treatment of the saddle point to the ho-
mogeneous uniaxial nematic state with nematic alignment along
δ̂z. This gives φ̄ α

2,m = 0 for mα ̸= 0 and α ∈ [R,F ]. This leads to the
self-consistent mean-field equation (for α ∈ [R,F ])

φ̄
0α

2 =
φ α

p

Lα

∫ Lα

0
ds
〈(

3
2
[uα

z (s)]
2 − 1

2

)〉
0α

= φ
α
p mα

N , (28)

where the average ⟨. . .⟩0α
is taken with respect to the single chain

mean-field energy

βE α
0 =

lα
p

2

∫ Lα

0
ds
(

∂ u⃗α (s)
∂ s

)2
(29)

−(aα φ
α
p mα

NAα +aRF φ
β
p mβ

NAβ )
∫ Lα

0
ds
{
[uα

z (s)]
2 − 1

3

}
From its definition, we have the constraint −1/2 ≤ mα

N ≤ 1, for
α ∈ [R,F ]. The overall nematic order of the system can be thought

of as the weighted average mtotal =
1

φp
∑
α

φ
α
p mα

N . For a perfectly

aligned state (mα
N = 1), we get φ̄2,0 = ∑

α

φ̄
α
2,0 = ∑

α

φ
α
p = φp.

5.2.2 Homogeneous Mean-field Approximation and System
Energy

For a homogeneous, mean-field approximation, the zeroth order
energy becomes (per unit volume V ) is given by
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β f IN
0 =

1−φp

vs
log(1−φp)+∑

α

φ α
p

Lα Aα

logφ
α
p (30)

+∑
α

χα φ
α
p (1−φp)−∑

α

aα

3
(φ̄ α

2,0)
2 +∑

α

φ α
p

Lα Aα

logqα

+χRF φ
R
p φ

F
p − 2aRF

3
φ̄

R
2,0φ̄

F
2,0 (31)

where f0 =F0/V is an intensive property of the system. Here, qα

is the partition function, given as

qα =
∫

du⃗
∫

du⃗0

∫ u⃗

u⃗0

D [⃗u(s)]exp{−βE α
0 [⃗u(s)]} . (32)

The homogeneous isotropic mean-field free energy is given by

β f I
0 =

1−φp

vs
log(1−φp)+∑

α

φ α
p

Lα Aα

log(φ α
p )

+∑
α

χα φ
α
p (1−φp)+χRF φ

R
p φ

F
p . (33)

Here, it should be noted that in the absence of any aligning field
[i.e. γα = (Aα aα mα

Nφ α
p +Aβ aRF mβ

Nφ
β
p )], the orientational partition

is unity. Below we simplify to the notation mα
N ≡ mα .

The residual Helmholtz free energy (density) of the nematic
phase relative to the isotropic phase is given by,

β fresidual = β f I
0 −β f IN

0

= ∑
α

{
aα

3
(φ α

p mα )
2 −

φ α
p

Lα Aα

log [qα (mα )]

}

+
2aRF

3
φ

R
p mRφ

F
p mF (34)

For a constant aα = a, Lα = L, and Aα = A, we get the free energy
by multiplying with the relevant volume LA/φp, resulting in the
expressions as written in the main manuscript

β∆ f0 =
â
3
( fRmR + fF mF )

2 − fR logqR − fF logqF (35)

where â = aφpLA and fα = φ α
p /φp. In the limit of fR → 1 (hence,

fF → 0) the above equation reduces to (superscript ‘1’ represents
single type of polymer component),

β∆ f (1)0 =
â
3

m2 − logq (36)

that matches with Ref.41.

5.3 Fluctuations around mean field solution

Now we specialize to fluctuation effects upto quartic or-
der with respect to the homogeneous mean field basis.
The vector of auxiliary variables are defined as, W ≡
[Ws,{φ α

0,0},{W α
0,0},{φ α

2,m},{W α
2,m}] (total of 25 terms) and the

vector containing all the fluctuations are defined using, ∆ =

[{δφ α
0,0},{δW α

0,0},{δφ α
2,m},{δW α

2,m}] (total of 24 terms due to the
incompressibility constraint). Performing Gaussian integral over

the fluctuating conjugate fields (not volume fraction fluctuation
fields), we arrive at,

−βF =−βF0 −
1
2

Γ̃
(2,φ)
1̃2̃

∆1̃∆2̃ +
∞

∑
n=3

1
n!

Γ̃
(n,φ)
1̃...ñ

∆1̃ . . .∆ñ (37)

where the above expansion is formally exact and written using
modified Einstein notation to sum over fluctuating volume frac-
tion fields of all constituents and integration over the respective
Fourier variables. The quadratic order term can be explicitly writ-
ten as,

Γ̃
(2,φ)
1̃2̃

∆1̃∆2̃ =
1

(2π)6 ∑
γ1,γ2

∫
d⃗k1d⃗k2Γ̃

(2,φ)
γ1γ2 (⃗k1 ,⃗k2)∆γ1 (⃗k1)∆γ2 (⃗k2) (38)

where γ runs over the three species present in the system (poly-
mer R and polymer F , noting δφs =−δφ R

0,0−δφ F
0,0) and over the l

and m indices (i.e. l = 0, m = 0 and l = 2, m =−2, . . . ,2). In order
to write the full matrix Γ(2,φ) in terms of its elements, we write
the structure factors for polymer species α as

S(α)
(l1,m1),(l2,m2)

(⃗k) =
1

L2
α

[
4π

(2l1 +1)(2l2 +1)

](m1+m2)/2
(39)

×
∫ Lα

0
ds1

∫ Lα

0
ds2

〈
Y m1

l1
(⃗u(s1))exp

[
i⃗k · (⃗r1 − r⃗2

]
Y m2

l2
(⃗u(s2))

〉
,

where r⃗1 = r⃗(s1) and r⃗2 = r⃗(s2). The entire Γ(2,φ) matrix is a 12×
12 matrix containing all the volume fraction fluctuations. The
matrix is sparse containing only certain non-zero elements (β ̸=α

in equations below and both indicates A and B):

Γ
(α)
(0,0),(0,0)(⃗k) =

1
vs(1−φp)

−2χα +
1

Aα Lα φ α
p
[S(α)
(0,0),(0,0)]

−1(⃗k) (40)

Γ
(α)
(0,0),(2,m)

(⃗k) =
1

Aα Lα φ α
p
[S(α)
(0,0),(2,m)

]−1(⃗k) (41)

Γ
(α)
(2,m1),(2,m2)

(⃗k) =−2aα

3
δm1m2 +

1
Aα Lα φ α

p
[S(α)
(2,m1),(2,m2)

]−1(⃗k) (42)

Γ
(αβ )
(0,0),(0,0)(⃗k) =−2χαβ (43)

Γ
(αβ )
(2,m1),(2,m2)

(⃗k) =−
2aαβ

3
δm1m2 (44)

To note, these expressions do not exhibit cross correlation of
structure between polymers R and F , since they are separate from
one another (i.e not a copolymer-like architecture). The formula-
tion above gives the exact free energy up to quadratic order.

Next steps involve, (1) writing the quadratic order free energy
within the RPA approximation in terms of the eigenvalues of Γ(2,φ)

matrix, (2) defining a non-interacting reference free energy, (3)
subtract this reference free energy and (4) using the property,

∏
η∈{fields}

γη = det[Γ] (where γ are the eigenvalues of the determi-

nant and the number of eigenvalues are same as the number of
fluctuating volume fraction fields) to arrive at

βF = βF0 +
V

4π2

∫
Λ

0
dk k2 log

{
det[Γ(2,φ)]

det[Γ(2,φ)
0 ]

}
(45)

8 | 1–11Journal Name, [year], [vol.],

Page 8 of 11Soft Matter



Fig. 6 Phase diagram showing the boundary (thick solid line) of isotropic (gray) and nematic states as a function of rigid polymer fraction, fR. Figures
((a)-(d)) show changes in free energy (cf. Fig. 5) for state A ( fR = 0.04), state B ( fR = 0.50) and state C ( fR = 0.96) for â = 17,27,37,47 (panel (a)
through (d) respectively). The states that are isotropic are designated as dashed squares in the left phase diagram while the states that shows nematic
ordering are shown in solid squares in the phase diagram.

In the above equation, we have introduced a high-k cutoff, Λ =

min
{lα

p }

2π

lα
p

to account for the ultraviolet divergence in field theory.

5.4 Chemical potential and system Phase Behavior

We only care about the phase behavior at the mean-field level.
Due to enforced incompressibility of the system the Gibbs and
Helmholtz free energy of the system are equivalent to one other.
Here, we define the chemical potential of η th species as,

β µη =
∂ (βF )

∂nη

= βvη f +V
∂ (β f )
∂nη

(46)

where the second equality follows from defining the free energy
density, as f =F/V . The expression for the zeroth order chemical
potential of species θ follows from the expression of mean field
free energy of the system. We write the mean field energy in a
consolidated notation as,

β f0 = ∑
k

φk

vk
log
(

φk

qk

)
+

1
2 ∑

j,k
χ jkφ jφk −

1
3 ∑

j,k
a jkm jmkφ jφk (47)

= ∑
k

φk

vk
log
(

φk

qk

)
+

1
2 ∑

j,k
Ξ jkφ jφk (48)

where Ξ jk = χ jk −
2
3

a jkm jmk. This leads to the expression

for mean field chemical potential for species i as, (where i ∈
{solvent,polymer A,polymer B})

β µ
(i)
0 = 1+ log

(
φi

qi

)
−vi ∑

j

1
v j

φ j +vi ∑
j

Ξi jφ j −
vi

2 ∑
jk

Ξ jkφ jφk (49)

where all the φi denote the mean-field volume fraction of species
i.

5.5 Effective Membrane Rigidity

5.5.1 Frank Elastic Energy of Polymer Brush Layer

Here, we briefly describe how existence of polymer brush layer in
its extended state is responsible for renormalizing the membrane
bending rigidity. Noting that one end of the polymer is tethered
to the membrane, we approximate the Frank elastic energy of the
polymer brush layer as25

βFelas =
1
2

∫
d⃗r
[

Kbend

(⃗
n× ∇⃗× n⃗

)2
+Ktwist

(⃗
n · ∇⃗× n⃗

)2

+Ksplay

(
∇⃗ · n⃗

)2
]

(50)

≈ 1
2

∫
d⃗x
[

Kbend

(⃗
nP × ∇⃗× n⃗P

)2
+Ktwist

(⃗
nP · ∇⃗× n⃗P

)2

+Ksplay

(
∇⃗ · n⃗P

)2
]√

R2
∥ (51)

where the 2-dimensional vector x⃗ ≡ (x,y), and n⃗P is the nematic
director direction at polymer leg on the membrane (point P) and
couples directly to membrane height fluctuation field. Hence, n⃗P

at point P on the membrane can be identified as a normal to
the membrane at P. This can be calculated by parametrizing the
membrane as P ≡ (x,y,h(x,y)), where h(x,y) represents the height
of the membrane at 2d grid point on the membrane (x,y). Hence,
the normal at point P is given by

n⃗P =

−→
PPx ×

−→
PPy

||−→PPx ×
−→
PPy||

=
−hxδ̂x −hyδ̂y + δ̂z√

1+h2
x +h2

y

≈−hxδ̂x −hyδ̂y + δ̂z (52)

where hx =
∂h(x,y)

∂x
and the approximate identity gives us varia-

tions with respect to minimal order changes in membrane height
fluctuations. Looking at the bend and twist terms of Frank elastic

Journal Name, [year], [vol.],1–11 | 9

Page 9 of 11 Soft Matter



energy we note that, (⃗∇× n⃗P)= hzyδ̂x−hzxδ̂y, where hzy =
∂ 2h(x,y)

∂ z∂y
and thus are all higher order terms. This implies only splay rigid-
ity of the polymers contribute to the Frank elastic energy to min-
imal order and is given by

βFelas ≈
1
2

Ksplay

√
R2
∥

(
hxx +hyy

)2
(53)

5.5.2 Helfrich Free Energy of Membrane and Renormalized
Bending Rigidity

For our case, we consider a membrane with the symmetric distri-
bution of all membrane components (such as lipids and proteins)
and the same environment on both sides of the membrane that
may ensure symmetric membrane fluctuations and, thereby zero
spontaneous curvature. The free energy for such a symmetric
membrane is generally expressed as the Helfrich Hamiltonian32,
given as

βF [h(⃗x)] =
∫

d2⃗x
[

νmem

2
(⃗∇h(⃗x))2 +

κmem

2
(∇2h(⃗x))2

]
(54)

where h(⃗x) describes the height of the membrane at location x⃗ ≡
(x,y) with respect to a reference state. In the above equation
νmem and κmem represent the membrane tension and (bending)
rigidity respectively. The membrane bending rigidity at any point

per above Helfrich Hamiltonian can be written as,
κmem

2
(hxx +

hyy)
2. Hence the membrane rigidity is renormalized due to Frank

elastic energies of polymers and is given by,

κ
eff
mem = κmem +Ksplay

√
R2
∥ ≥ κmem (55)

Qualitatively, we can infer in the isotropic state of polymer brush
layer, the splay rigidity do not contribute to the overall membrane
bending resistance. However, in the nematic extended state of the
polymer brush layer, we have finite Ksplay and effective membrane
rigidity increases to larger stiffness prone to lesser fluctuations
due to thermal and active forces in the medium. In essence the
ratio, Θp/m = Ksplay

√
R2
∥/κmem controls membrane fluctuations to

zeroth order.
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