7® ROYAL SOCIETY
P OF CHEMISTRY

Dalton
Transactions

View Article Online

View Journal | View Issue

Unveiling the energetic potential of
azahomocubane (AHC): a new class of potential
propellants, explosives and oxidizers+i
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Cage compounds are potential kinetic rocks and thermodynamic powerhouses. Their strain energy plays
a crucial role. Hence, adamantane, cubane, homocubanes, and bishomocubane skeletons have become
prominent recently. However, research on the design and development of azahomocubane-based ener-
getic materials has yet to be explored. The aim of the present work is to illustrate the potential of azaho-
mocubanes as next-generation propellants, explosives and oxidizers. The energetic potential of any new
materials was determined using B3LYP/6-31+G**, G2, and MP2/6-311++G** levels at the Gaussian 03
suite of programs. The new azahomocubanes possess a density range of 1.33 g cm™ to 2.14 g cm™.
Most of the azahomocubanes have significantly elevated high-positive heats of formation
(AH; (s) = 289.82 kdmol ! to 728.41 kJ mol™). Compounds AHC-12-19 have superior potentials as solid
propellants in rocket propulsion. Additionally, this study reveals that compounds AHC-20 and AHC-21
could be highly effective primary explosives (AHC-20, P = 44.46 GPa, D = 9706 m s~ %; AHC-21, P = 45.64
GPa, D = 9708 m s71) exceeding the performance of RDX, HMX and comparable to that of ONC and

CL-20. Our finding suggests that azahomocubanes have great potential in the field of energetic materials.
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Introduction

Homocubanes derived by the introduction of one methylene
group (-CH,-) into the cubane core are homologues of cubane.
Cubane became the most prevalent cage skeleton, which gained
the scientific community’s interest because of its potential appli-
cations in high energy density material (HEDM) and medicinal
applications.? In contrast, the synthesis, handling, and storage
of cubane derivatives are problematic attributed to involving a
multiple-step synthesis approach and production cost, and only
a few data are available on such materials. The characteristic
chemistry of these molecules, by their characteristic strain
energy, has been extensively exploited recently.* Strain with
appropriate explosophoric groups, such as nitro (-NO,), nitrato
(-ONO,), azido (-N3), and nitramine (-NHNO,), etc. yield novel
potential high energy density materials.’ In the present era, com-
putational-based design and prediction of emergent properties
of new materials are prominent because these computational
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tools provide us with prospective properties before their actual
synthesis, allowing us to design a new material cost-effectively.®
Recent reports on the synthesis and development of polycyclic
cage compounds based on energetic material show that these
materials have the potential to become future-generation fuel/
propellants in solid rock propulsion.” Very few reports also
suggest that poly nitro-stained cage compounds possess superior
explosive properties, which enhance their applications in civil,
military, and space applications.””® Cage skeletons 1-7 based
novel compounds are demonstrating prominence in their
various applications. However, the homocubane core 8 despite
its first synthesis in 1968, has not yet received comparable reco-
gnition in the scientific community (Schemes 1 and 2).

A homocubane was synthesized by Dunn et al® and
Paquette et al'® Subsequently, various research groups
reported notable homocubanes derivatives.”'*'! In contrast,
an azahomocubane (AHC) is a relatively new compound syn-
thesized by Eaton et al. by acid-catalyzed rearrangement of
cubyl azides, giving 1-substituted 9-azahomocubanes.'” This
transformation inspired Williams and co-workers to synthesize
and characterize novel azahomocubane derivatives using
dimethyl 1,4-cubanedicarboxylate 10.'* Subsequently, a new
derivative of AHC, 1-azahomocubane, was reported.'* These
recent reports demonstrate the feasibility of introducing nitro-
gen atoms into the homocubane skeleton. Based on the posi-
tion of nitrogen, nine theoretical isomers are possible (Fig. 1).

This journal is © The Royal Society of Chemistry 2025
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Adamantane  (1).  2,6,8,12-Tetraoxa-4,10-diazatetracyclo[5.5.0.05°.0311}-
dodecane (2). 2,4,6,8,10,12-Hexaazatetracyclo[5.5.0.0%11.05°|dodecane (3).
Pentacyclo-(5.4.0.02%.0%10 059)-undecane (4). Pentacyclo [6.3.0.026.0%10.059]
undecane (5). Pentacyclo[5.3.0.025.03°.0%decane (6). Cubane (7).
Pentacyclo[4.3.0.0%5.0%8.0*7]-nonane (8).

Scheme 1 Typical polycyclic cage skeletons.
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Scheme 2 Highly dense top-performance energetic cage

compounds.”8

Recent studies suggest that a secondary amine (9i, 9-azaho-
mocubane) bearing isomer was the most stable skeleton com-
pared to the other isomers with a tertiary amine."® In contrast,
9-azahomocubane (9i, 9-AHC), rarely explored in the field of
energetic materials, is a promising scaffold from the stereoche-
mical perspective because it is effectively functionalized
through the secondary amine moiety and the most stable skel-
eton over the other isomers, which allows the design of
various novel energetic materials identified as an optimal cage
skeleton for the present work (Scheme 3).

Computational method

The Density Functional Theory (DFT) based geometric optimiz-
ation and frequency analyses of the new materials were deter-
mined using B3LYP/6-31+G** level, and single energy points

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Schlegel isomers of azahomocubane

AHC-9a-9i.

diagrams of various

were calculated at the MP2/6-311++G** level at Gaussian 03
(Revision D.01) suite of programs.®
all ten compounds were obtained using an atomization
approach using the G2'7 ab initio method and the isodesmic
method (Fig. S2, Tables S1 and S2}). Furthermore, solid-state
heats of formation of the new materials were calculated using
gas-phase enthalpy and enthalpy of sublimation using eqn
(S11) and (S12).%

The densities of the title compounds were calculated using
a newly developed modified Pulitzer method.'® Subsequently,
based on their solid phase enthalpies of formation (AH; (s))
and calculated densities (Table 1), the corresponding propul-
sive (Isp and C*) and detonation performances (P and D) were
evaluated using EXPLO5 V7.01 software."®

Additionally, the stability parameters of the new com-
pounds, such as impact sensitivity (hs0) (eqn (S13)1), kinetic
energy (AEpomo-rumo), and electrostatic potential (ESP) were
predicted at the B3LYP/6-311++G (d,p) level of theory with the
help of Multiwfn>® and VMD software*’

The heats of formation for

Results and discussion

A proposed synthetic strategy for compounds AHC-12-21 is
described in Scheme 3. Initially, 9-azahomocubane, 9i, can be
prepared from compound 10 efficiently. Subsequently, using a
multi-steps strategy, various explosophoric groups can be
introduced. Azahomocubane (9i-AHC) with secondary amine
(R;NH) enables us to introduce various functionalities by
nucleophilic substitution/displacement of an N-proton. Based
on the feasibility of the synthesis, we have designed ten deriva-

Dalton Trans., 2025, 54, 4082-4088 | 4083
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Scheme 3 Design of new azahomocubanes (AHC-12-21).
Table 1 Comparison of physicochemical properties of compounds AHC-12-21
Compound  Formula® FW’[gmol™] N+0°[%] OB (%) AH[kImol™] p/[gem™@] P[GPa] D"[ms™] hs [em]
AHC-12 CgHoN 119.16 11.76 —275.25 390.22 1.33 12.52 5670.94 27.07
AHC-13 CgHgN,0, 164.16 36.55 —-175.44 402.36 1.53 15.88 6297.39 21.96
AHC-14 CgHoN30, 179.18 41.31 —-165.20 454.36 1.53 15.66 6593.09 44.66
AHC-15 CoH10N,O, 178.19 33.68 —188.57 356.02 1.47 14.67 6155.14 42.50
AHC-16 CoH;oN,03 194.19 39.15 —164.79 289.82 1.51 15.57 6278.67 45.26
AHC-17 CoH oNy 174.21 32.16 —-211.25 728.41 1.40 14.41 6259.27 41.02
AHC-18 CoHgN,Og 268.19 56.68 —95.46 345.45 1.71 21.40 7254.70 56.70
AHC-19 C10H10N4O6 282.21 53.86 —-107.72 322.45 1.66 19.20 7009.23 51.22
AHC-20 CgHNgO¢ 479.14 79.74 25.04 309.04 2.08 44.46 9706.85 6.96
AHC-21 CsN;oO15 524.14 81.66 30.53 304.94 2.14 45.64 9708.21 6.98
Cubane CgHg 104.15 0.0 -307.69 602.64 1.29 12.70 5990.00 24.14
TNT C;H5N3;04 227.13 60.76 —-73.96 -59.30 1.65 18.56 6839.96 46.79
RDX C3HgNgOg 222.12 81.06 -21.61 70.30 1.80 34.01 8858.00 26.14
HMX C4HgNgOg 296.16 81.06 -21.61 74.80 1.91 38.44 9285.00 27.58
CL-20 Ce¢HgN,01, 438.18 82.17 —-10.95 397.80 2.04 46.70 9455.00 9.25
ONC CgNgOq6 464.13 79.29 0.0 604.20 2.06 46.60 9864.00 2.86

“Molecular formula. ” Formula weight. N + O contents in %. ¢ CO, based oxygen balance. ¢ Calculated solid-phase standard enthalpy of for-
mation. / Density calculated using the correlation of p = 1.0330 (M/V) + 0.001836 (00:°v) — (v/6).** € Detonation pressure calculated using EXPLO5
V 7.01. "Detonation velocity calculated using EXPLO5 V 7.01. 'k, [cm] is the height from where 50% probability of the dropped materials
resulted in an explosion calculated using equation S13. Then their corresponding impact energies %s[J] were calculated using a correlation /5[J]
= mgh, where, m = 2.5 kg hammer weight, g = 9.81 m/s, and h = &5, [cm] values.

tives of 9-AHC by introducing the most promising explosopho-
ric groups, as listed in Fig. 2.

Interestingly, derivatives AHC-14 and AHC-20 have vast
potentials to generate energetic salts AHC-22-23, and that
could be the future generation green solid propellants, explo-
sives, and oxidizers (Scheme 4).

The computationally based design and studies of new high
energy density materials (HEDMs) reveals the potential of new
materials as an explosive and propellent in military and space
industry applications. Thus, the efficiency of potential explo-
sives can be measured in terms of their detonation perform-
ance (P and D), an oxidizer can be identified based on the com-
bination of available oxygen for combustion, which is typically
quantified in terms of oxygen balance (OB%) and specific
impulse (Isp). High specific impulse (Isp) and density specific
impulse (Isp) of a material, suggest their potential use as a
propellant. In the present study, we evaluated all materials as
solid materials, and their explosive and propulsive perform-
ances were calculated with different propellant formulations

4084 | Dalton Trans., 2025, 54, 4082-4088

with hydroxylterminated polybutadiene (HTPB, a novel ener-
getic binder), ammonium perchlorate (AP, oxidizer), and alu-
minium (Al, fuel supplement). Subsequently, their perform-
ance was compared with well-known energetic materials as
listed in Tables 1 and 2.

Newly designed azahomocubanes AHC-12-21 possess high
calculated densities (p = 1.33 g em™> to 2.14 g cm™>), associ-
ated with significantly positive solid-phase enthalpy of for-
mation (4H; (s) = 289.82kJmol " to 728.41 k] mol™"), those
are comparable to top performing energetic materials as listed
in Table 1, which establish them as viable candidatesin the
field of energetic materials. Compounds AHC-20-21 have high
positive oxygen balances (AHC-20, OB% = 25.04 and AHC-21,
OB% = 30.53) comparable to well-known oxidizers such as
ammonium dinitramide (ADN, OB% = 25.80), ammonium per-
chlorate (AP, OB% = 27.23), 2,2,2-tetranitroacetimidic acid
(TNAA, OB% = 30.12).

The detonation performance of azahomocubane was calcu-
lated using EXPLO5 V7.01 software as listed in Table 1.

This journal is © The Royal Society of Chemistry 2025
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0%8.0*"Inonane  (18).
nonane
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Fig. 2 Azahomocubane (AHC) derivatives studied in the present work.
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Scheme 4 Future aspect of current work.

Compounds AHC-12-19 have an average detonation perform-
ance (P = 12.52 GPa to 21.40 GPa; D = 5670 m s~ to 7254 m
s™!) and which are comparable to cubane (P = 12.70 GPa; D =
5990 m s~'), and TNT (P = 18.56 GPa; D = 6839 m s '). On the
other hand, compound AHC-20-21 have detonation properties
(AHC-20, P = 44.46 GPa, D = 9706 m s '; AHC-21, P =

This journal is © The Royal Society of Chemistry 2025

45.64 GPa, D = 9708 m s~ ') which are better than those of top
performing primary explosives RDX and HMX and comparable
to ONC and CL-20.

The propulsive performance of azahomocubanes were pre-
dicted using EXPLO5 V7.01 software at five different propellent
formulations and was examined (i) as a neat compound; (ii) at
the ratio of 88:12 (azahomocubanes:Al); (iii) at the ratio of
78:12:10 (azahomocubanes:Al: HTPB); (iv) at the ratio of
20:80 (azahomocubanes:AP); and (v) at the ratio of 80:20
(azahomocubanes : HTPB) listed in Table 2 and Fig. 3. This
indicates that the specific impulse (Isp, s) and density specific
impulse (pIsp, g cm™ s) of compounds AHC-20 and AHC-21
are significantly higher than TNT, RDX and AP. On the other
hand, most of the compounds possess high characteristic vel-
ocity, making them promising candidates for solid rocket pro-
pulsion. Interestingly, compounds AHC-13 and AHC-14 at the
ratio of 88:12 (azahomocubanes: Al) exhibit optimal specific
impulse (AHC-13, Isp = 268 s; AHC-14, Isp = 270 s), revealing
the best combination of strain (azahomocubanes core) and
energy (-N-NO, and -N-NH-NO,).

As for the kinetic stability, the energy gaps between HOMO
and LUMO were estimated and are in the order of CB >

Dalton Trans., 2025, 54, 4082-4088 | 4085
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Table 2 Comparison of physicochemical properties of compounds AHC-12-21

Compound AE®' [omo-Lumo) Isp™ [s] pIsp™ [s] c* % [ms™] Isp” [s] Isp’ [s] Isp® [s] Isp™ [s]
AHC-12 6.080 167.55 223.52 990.40 178.30 173.79 246.08 158.48
AHC-13 5.825 202.64 311.66 1226.70 267.98 248.30 258.38 185.10
AHC-14 5.446 207.17 318.63 1257.60 270.04 253.04 258.98 188.72
AHC-15 4.733 191.82 283.52 1155.60 242.20 226.34 256.28 177.16
AHC-16 4.869 199.36 301.63 1208.50 223.30 227.87 257.79 182.92
AHC-17 5.372 194.68 273.53 1166.10 203.03 195.66 255.71 179.49
AHC-18 4.326 227.86 390.78 1415.80 240.91 232.06 243.45 201.99
AHC-19 3.432 219.73 365.41 1358.50 236.95 229.91 247.79 196.94
AHC-20 5.183 263.02 548.40 1563.40 266.40 267.44 194.66 232.91
AHC-21 5.331 256.49 549.40 1525.40 261.51 273.27 189.49 237.40
Cubane 7.046 114.30 147.45 667.40 105.44 106.87 231.53 108.99
TNT 4.926 206.49 341.54 1283.5 232.00 225.11 186.98 200.55
RDX 5.991 266.91 480.45 1648.00 276.68 274.08 254.06 234.12
AP — 156.63 306.15 977.00 232.00 262.11 156.63 227.37

“Energy difference between HOMO and LUMO orbitals in eV. b1sp = specific impulse of neat compound (monopropellant). ©plIsp = density
specific impulse of neat compound (monopropellant). ¢ Characteristic velocity. ¢Isp = specific impulse at 88% compound and 12% Al /Tsp =
specific impulse at 78% compound, 12% Al (fuel additive) and 10% binder (HTPB). ¢ Isp = specific impulse at 20% compound and 80% AP. " Isp
= specific impulse at 80% compound and 20% HTPB. ‘ Specific impulse calculated at an isobaric pressure of 70 bar and initial temperature of

3300 K using EXPLO5 V 7.01.
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Fig. 3 Comparison of physicochemical properties. (a) Densities (b) Detonation properties. (c) Propulsive properties.

AHC-12 > RDX > AHC-13 > AHC-14 > AHC-17 > AHC-21 >
AHC-20 > TNT > AHC-16 > AHC-15 > AHC-18 > AHC-19, as
listed in Table 2. Interestingly, the impact sensitivity of 20 and
21 is significantly higher (45, (cm) = 6.96 and 6.98 respectively)
compared to the impact sensitivity of RDX (26.14), HMX

4086 | Dalton Trans., 2025, 54, 4082-4088

(27.58) and lower than that of ONC (2.86), making them prom-
ising primary explosive.

Additional analysis of stabilities of title compounds were
evaluated with the help of electrostatic potential (ESP)
measurements as shown in Fig. 4 and Fig. S14-S23.

This journal is © The Royal Society of Chemistry 2025
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Computed electrostatic potential (ESP) maps of AHC-20 (4a) and AHC-21 (4d). scatter diagram of AHC-20 (4b) and AHC-21 (4e). Reduced

density gradient (RDG) of AHC-20 (4c) and AHC-21 (4f) calculated at B3LYP/6-311++G(d,p) level.

Compounds 20 and 21 have comparable ESP maxima
(+67.48 keal mol™" and +65.57 keal mol™", respectively) and
global ESP minima (—12.03 kcal mol™* and —10.13 kcal mol™,
respectively) to CL-20 (+66.61 kcal mol™* and —15.74 kcal
mol ™). For RDX (+50.01 kcal mol™ and —20.81 kcal mol™),
and HMX (+53.74 kcal mol™" and -24.80 kcal mol™") see
Fig. S3.} Furthermore, using scatter diagram and reduced
density gradient (RDG), the high strain in the core structure
and weak interaction between the substituents can be
explained as shown in the Fig. 4b, 4c, 4d, 4e and Fig. S14-
$23.%

Conclusions

This study identified azahomocubanes as a new class of poten-
tial propellants and oxidizers. The densities were predicted to
be 2.08 g cm™® to 2.14 g cm ™ for compound AHC-20 and
AHC-21, respectively, which are significantly higher than those
of top energetic materials. In addition, the title compounds
exhibit superior detonation performances with good propul-
sive performances and higher sensitivities than RDX, HMX,
and CL-20, which suggests that AHC-20 and AHC-21 have a
potential comparable to RDX, HMX and CL-20 for civil and
military applications. Additionally, these azahomocubanes

This journal is © The Royal Society of Chemistry 2025

demonstrate significant potential as solid propellants in the
form of their energetic salts 22 and 23.
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