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Digitalisation of catalytic processes for sustainable
production of biobased chemicals and exploration
of wider chemical space
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Global warming and the depletion of petroleum resources require immediate and focused attention, and

there is a pressing need to accelerate progress. Digital approaches can be leveraged in these efforts, for

example in exploring effective replacements for petrochemicals or effectively identifying molecules with

better performance. One such potential replacement is lignocellulosic biomass: a sustainable feedstock for

producing chemicals and fuels that does not compete with essential food supply. However, the inherent

complexity of lignocellulosic biomass and the technical challenges in its transformation pose significant

obstacles that require data-driven approaches to solve. Here, we use the catalytic transformation of

lignocellulose to value added chemicals as a case study highlighting the critical role of digital technologies,

including improved data integration, process optimization, and system-level decision-making in catalyst

design, synthesis, and characterization. Data-driven approaches work hand-in-hand with technology: the

integration of machine learning (ML) and artificial intelligence (AI) allows for efficient molecule design and

optimization; coupling ML/AI with the use of flow chemistry and high-throughput synthesis techniques

enhances scalability and sustainability. Together, these innovations can facilitate a more resilient and

sustainable chemical industry, reducing dependency on fossil fuels and mitigating environmental impact.

Introduction

The climate emergency demands immediate solutions to
reduce the use of petroleum resources, e.g., via the
development of alternative chemicals and fuels.1 However, it
is of critical importance that any proposed solution does not
use land that is needed for food production. Lignocellulosic
biomass, which does not require agricultural land, has
promising potential to meet the demand for non-renewable
feedstocks. Lignocellulose is a renewable source of carbon
which is produced from CO2 through the process of
photosynthesis,2–4 and is abundant in nature: >170 billion
metric tonnes are produced per year. However, only 5% of the
available lignocellulosic biomass is used to produce
chemicals and fuels and the remaining 95% is treated as
waste: the complex nature and varied functionality of
lignocellulosic biomass makes its transformation to
commodity products challenging and time consuming,
limiting its use.3

Lignocellulosic biomass mainly consists of lignin (10–
20%), cellulose (30–50%) and hemicellulose (20–40%).3,5

Lignin is a complex cross-linked polymer of aromatic rings,

such as coumaryl, coniferyl and sinapyl alcohols. Cellulose is
a homopolymer of hexoses (β-D-glucopyranose units) linked
together by β-glycosidic bonds making a cellulose microfibril.
Hemicellulose is a branched polymer of pentoses and
hexoses.6 Each can be transformed to various platform
chemicals such as 5-hydroxymethyl furfural, levulinic acid,
furfural, xylitol and protocatechuic acid7 (Fig. 1).

Lignocellulosic biomass will not be used as a
petrochemical replacement without cost effective, fast,
selective and atom efficient routes to its transformation into
commodity products, but the structure of lignocellulose and
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its component constituents, lignin, cellulose, and
hemicellulose, poses several difficulties. The presence of
intra- and intermolecular hydrogen bonding between
cellulose microfibrils make them recalcitrant towards
dissolution in any organic solvent, meaning harsh reaction
conditions are required, e.g., high temperature (320 °C) and
pressure (25 MPa).8 Lignin is a heterogeneous polymer
comprised of a complex mixture of phenolic and non-
phenolic compounds that are difficult to separate and
characterize.9 Unlike cellulose, hemicellulose is relatively easy
to depolymerize; its amorphous and highly branched
structure improves solubility. However, the composition of
hemicellulose varies depending on the source (e.g., hard
wood vs. soft wood), meaning reaction conditions vary
considerably. Furthermore, the chemicals obtained after
depolymerization possess varied oxygen containing
functional groups which makes the transformations non-
selective and atom inefficient.10

Despite these challenges, progress has been made in
chemical transformations of biomass: catalysis has
revolutionized this field by lowering the activation energy of
the processes while improving selectivity and reaction
kinetics.11 Various studies have been conducted on
lignocellulosic transformations to fuels and chemicals using
diverse catalysts, such as ionic liquids,12,13 zeolites,14 metal
supported catalysts,15 metal organic frameworks,16 and single
atom catalysts.17,18 Typical catalytic reactions of
lignocellulose include the depolymerization of C–O bonds in
the polymeric chain of cellulose, formation/ rearrangement
of C–C bonds in intermediates, and hydrodeoxygenation
(HDO) reactions to remove of oxygen-containing functional
groups and yield platform chemicals.19–22

Despite these advances, and due to the complexity of the
system under study, there are limits to progress. Catalyst
selection is still typically based on a trial-and-error approach;
detailed structure–activity relationships are missing;
optimisation to find robust and economical catalysts that can
offer better selectivity, repeatability, and durability is in its
early stages. Catalysis has inherent major challenges in terms
of reproducibility, recoverability and durability to deliver
sustainable and scalable processes.23,24 The complex nature
of the biomass feedstock makes it difficult to decide which
pathway to follow: difficulties in understanding catalyst–
substrate binding mechanisms, the nature of active sites, and
active site–support interaction25 typically result in poor
selectivity and challenges in scale up.26–28 Thus, despite the
availability of sophisticated tools such as high throughput
testing systems, in situ catalyst characterization techniques,
and powerful theoretical tools to predict structure activity
relationships and compute energy landscapes, industries are
still relying on petrochemical-based feedstocks.29

To solve these challenges and deliver sustainable and
efficient production of chemicals from biomass will require a
combined approach, including a) computational modelling;
b) data-driven catalyst design; c) process optimization
leveraging artificial intelligence (AI) and machine learning

(ML) tools; and d) synthesis technology, e.g., high-throughput
experimentation and flow self-optimized systems, to
efficiently explore chemical space.30,31 The community is
building such capabilities: for example, the Nachwuchs
Reaktionstechnik (NaWuReT)32 and Young German Catalysis
Society (YounGeCatS)33 summer schools emphasize
collaborative efforts between engineers and chemists to
develop sustainable and economically viable technologies
focussing on defossilization, carbon capture and utilization,
fostering a circular economy through cooperation,
communication and digitalization.34

In this article we will highlight the state of art in digital
catalysis, particularly focusing on strategies that can be
implemented for catalytic biomass transformation. By
employing essential digital frameworks, adopting data-driven
catalyst design and optimization methods, and using AI/ML
models to optimize the process and rationally design
synthetic pathways, we anticipate the transition to biomass-
based feedstocks will be accelerated.

Data frameworks for digital catalysis

Data structure is a fundamental first consideration for any
data-driven scientific field. Data standardization in catalysis
research is crucial for creating datasets that are truly useful,
reproducible, and shareable. Standardized protocols should
be adopted to record the data, including negative results.
These protocols should be regularly reviewed to integrate
emerging best practices, community standards, and
technological advancements in catalysis research.

Catalysis is interdisciplinary in nature, including
inorganic, organic, analytical, physical, computational
chemistry, engineering and chemical physics; each of these
disciplines involves different techniques and methods,
generating data in a range of formats. Catalysis data can be
broadly classified into two types: catalyst synthesis and
characterization data (catalyst/material centric) and reaction
data (reaction/experiment centric) as depicted in Fig. 2.
Capturing catalyst production data is particularly important:
catalyst properties such as surface area, metal dispersion,
and oxidation states of metal changes with minute variations
from batch to batch, contributing to reproducibility
challenges. Furthermore, the active form of catalyst is
generally achieved only under reaction conditions, making it
difficult to understand the complex relationship between
catalyst properties and catalyst activity. Hence, integrating in
operando characterization data is critical. The German
Catalytic Society, GeCATS, reported the five pillars of data
frameworks for meaningful description of catalytic processes:
data exchange with theory, performance data, synthesis data,
characterization data and operando data.35,36

The diverse data formats across various areas of catalysis
characterization and performance data and metadata create
significant challenges in comprehensively recording and
managing all the information. For instance, synthesis data
such as details of glassware, reactors and furnace used, lot
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number of chemicals, order of addition of reagents, aging
time, pretreatment conditions (such as flow rate of gases and
ramp rate in the furnace) are often ignored in the literature,
yet influence catalyst activity, causing irreproducibility from
batch to batch.37 The nature of the metadata to be recorded
is a key consideration in database design, optimization,
governance, and integration, ensuring the database structure
is the right fit for the desired application. Winther et al.
recorded the data and metadata for catalytic surface reactions
using the “ARRAY” data type, generating an open repository
including atomic positions and numbers determining the
chemical composition of the catalytic surface and minimum
adsorption energies based on density functional theory (DFT)
calculations: ‘https://www.Catalysis-Hub.org’. Structured
query language (SQL), used to manage and manipulate
relational databases, was implemented to store the data in
ordered tables, meaning that property selection (e.g.,
reactions involving CO2, or surfaces containing Ni) can be
used to recall a subset of column and rows from the tables.38

Digital frameworks are required to record the data with
metadata in a structured manner with the adoption of
principles of digital catalysis, using FAIR (findable,
accessible, interoperable, usable) data principles39 as
developed by Wilkinson et al., a diverse group of
stakeholders from academia, industry, funding agencies,
and scholarly publishers.39 FAIR principles prioritize
enabling machines to autonomously locate, access, and use
data, while still supporting human users. Ensuring data are
easy to find in standardized formats is a key step in

integrating them with automated workflows for better
reproducibility.40 One benefit of FAIR data is that it
promotes cross-disciplinary research by establishing
common standards, allowing data from one field to be
applied to new contexts, such as leveraging semiconductor
studies41 for catalysis research.42 Whether recording data
that has been generated by the user, or collating
information from third-party sources such as the scientific
literature, data curation is essential to ensure that data is
accurate, reliable, well-documented and accessible for future
use while adhering to ethical and legal standards. Data
curation includes the collection of data from diverse
sources, data cleaning to remove inconsistencies and
enriching it with metadata such as catalyst chemical
composition, reaction conditions, characterization data and
performance metrics. It is critical for advancing catalytic
science by fostering collaboration, improving data
transparency, and accelerating the design of most effective
catalytic systems.43,44

Marshall et al. discussed the current status of data
infrastructure and future directions of data management with
FAIR data principles for the catalysis community.45

Automated solutions and standard operating procedures,
incorporating benchmarks, play a crucial role in improving
data management and laying the groundwork for
autonomous catalyst discovery, a goal that remains distant
but achievable. In their viewpoint, these advancements can
be initiated in individual laboratories, the broader
responsibilities lie with the scientific community to establish

Fig. 2 Catalysis data: catalyst synthesis centric and reaction activity centric.

Catalysis Science & Technology Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
ja

nu
ár

a 
20

25
. D

ow
nl

oa
de

d 
on

 1
6.

10
.2

02
5 

10
:5

0:
48

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://www.Catalysis-Hub.org
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4cy01525h


1692 | Catal. Sci. Technol., 2025, 15, 1689–1701 This journal is © The Royal Society of Chemistry 2025

overarching repositories that respect access rights and
intellectual property concerns. Progress depends on the
active participation of all researchers—enhancing IT literacy,
launching local initiatives, appointing data stewards to
mediate between researchers and IT specialists, and
mentoring younger scientists.45

Considering the quantity of parameters that should be
recorded, datasets can quickly reach very large sizes. Research
data management (RDM) is essential especially when the
complexity and size of the required datasets is vast. Despite
its importance, many laboratories still rely on paper
notebooks, and data is frequently stored in proprietary or
obsolete formats, lacking proper experimental context. This
practice limits the use of data beyond being reported in
supplementary information (SI) of research publications.
Electronic Lab Notebooks (ELNs) and Laboratory Information
Management Systems (LIMS) offer solutions for more effective
data management, simplifying both research processes and
publication. Researchers can also benefit from approaches
developed within the logistics and financial industries, where
large and complex datasets are commonplace, and solutions
have been developed to answer these challenges. For example,
cloud storage frameworks such as “data marts”, “data
warehouses” and “data lake” architectures can be used to
store structured and unstructured data. A “data warehouse” is
an organization-wide repository that integrates structured
data from multiple sources, offering a centralized platform
for analytics and decision-making. A “data mart” is a subset
of a data warehouse, used for specific projects to store
structured data for fast querying and reporting. “Data lakes”
can be used to store raw, semi structured and unstructured
data.46 However, these large-scale architectures require
specific IT infrastructure and may be out of reach for many
academic groups: it is important that the chosen data
framework fits the needs of the data and the application, and
that the energy and resource use inherent in data storage and
handling are considered and carefully justified.

To ensure consistency in any data framework, the
adoption of minimum information standards for data
handling is crucial.40 For example, AC/Cat Lab launched in
2003 and has been continuously developing as ELN to record
the findings in catalysis.47 For data collection, platforms that
run alongside or work with equipment-specific software are
being developed. For example, Adacta is a research data
management platform developed for catalysis that creates a
digital twin of the testing environment and stores time-
accurate data to measure catalyst performance, with options
to store generated data in ELNs or databases.48 Other
available data frameworks and platforms for catalysis
include: Nomad (advanced in the field of computational
chemistry with FAIR principles and unified data storage),49

Catalysis Hub (database of surface reaction generated by
DFT),50 Catalyst Acquisition by Data Science (CADS),51 the
Cambridge Structural Database,52 Swiss CAT+,53 Zenodo,54

the Material Project,55 the Material Cloud,56 and the
Nationale Forschungsdateninfrastruktur für die Chemie

(NDFI4cat).57 Although not currently focused on biomass,
each of these can be adopted to record the catalysis data for
biomass transformation.

To ensure robust and comparable datasets, worldwide
standardized operating procedures should be used by
laboratories, enabling the benchmarking of catalytic
processes.45 It is important to standardize catalyst data
collection with high quality, consistent, and complete data,
and to include negative results to understand the boundaries
between positive and negative outcomes and to enable the
effective training of AI models. Research data management,
integrating feedback loops at every stage of the data
collection chain, can enhance the information and
knowledge gained and influence the next set of experiments.
Iterative reaction design further helps in building
quantitative models based on AI/ML to predict other regions
of interest both in catalyst discovery and chemical space for
the processes.36 In the specific case of bio-based
transformation, feedstock source and life cycle assessment
data should also be recorded and included in catalytic data
that helps in decision making towards sustainable
transitioning to biobased industry. Ensuring that high-quality
data and advanced digital frameworks are available is also
critical to feed into effective and/or autonomous catalyst
discovery.

Data driven catalyst design and
optimization

Access to comprehensive catalytic data is particularly
beneficial for catalyst design. However, catalyst design is
challenging due to the complexity of catalyst behaviour under
different conditions, and this is further increased when
dealing with the complex nature of biomass. Catalyst
informatics58 can be a potential solution to enable informed
design. Catalysis informatics is based on three concepts:
catalyst data, ‘data to knowledge’, and catalyst platform, all
operating simultaneously. In this way, experimental,
computational, and literature data is used to transform raw
data into actionable knowledge using data science
techniques, extracting insights and driving advancements in
the field. A catalyst platform serves as a centralized hub,
integrating databases and data science tools to support this
process.59

First an informatics environment is set up, using Python,
Linux, and suitable available tools (e.g., scikit-learn,60

pandas,61 matplotlib62). A workflow of catalyst informatics
(Fig. 3) then typically uses the following steps: data
collection; setting the objective variable; data pre-processing;
statistical analysis and data visualization; machine learning
and inverse analysis.63 Tailored data collection is carried out
to target the objectives, such as yield and selectivity. Often,
the data collected have inconsistencies in units and formats
which must be harmonised, and data in text format needs to
be converted into numerical values for machine readability
and visualization: this process is known as data pre-
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processing or data cleansing. Data pre-processing is also
important to identify outliers and treat them appropriately.64

Data visualization is used to identify the pattern and trends
for multidimensional data, using techniques such as parallel
coordinates and RadViz; these plots later guide machine
learning models to predict the descriptor variables to achieve
the objective defined earlier.65 Inverse analysis, also referred
to as inverse design, is where existing catalysis data is used
to predict and design a new catalyst that would have desired
properties, rather than starting from a library of known
catalysts and modelling or testing whether any meet the
requirements. Here, data science plays an important role in
linking catalyst design with catalyst data, and, through
machine learning, identifying trends and rules that can be
used to suggest new catalysts that meet the desired criteria.

The success of catalysis informatics depends on the
quality and structure of data. Difficulties arise from poor data
uniformity which can arise from data loss via media
conversion, exclusion of metadata, communication barriers,
and lack of field-wide standardization. To avoid such issues,
data ontology can be employed to structure the data and
define information. Ontology is a structured system that
defines a domain, its objects, and the relationships between
these objects.66 While it shares surface similarities with
traditional database structures, ontology fundamentally
differs due to its reliance on description logic and formal
semantics. These features, enabled by technologies such as
web ontology languages (OWL), allow ontologies to define
data vocabularies and their relationships in a manner that
facilitates intelligent machine navigation and reasoning.67

Ontologies can integrate vast datasets including metadata,
annotations, and observations in a layered approach by using
logically consistent ontological rules that connect the

datasets with each other. Additionally, ontologies can
enhance data retrieval by enabling semantic querying based
on definition and restrictions. The inferential capabilities of
such structures allow autonomous reclassification and
reorganization into new subclasses, which can reveal new
information and unconventional solutions to the query.
Ontologies enable the continuous addition and refinement of
definition, which can be particularly beneficial for complex
problems such as catalytic biomass transformation.67–69

Behr et al. investigated the landscape of ontologies for
catalysis data by exploring the systematic collection of
ontology metadata.68 A code-based workflow was adapted to
convert metadata to easy-to-read markdown files that
automatically mapped the classes between the ontologies
pairs of catalysis metadata and could be reused or easily
adapted by other ontologies. These codes were made
accessible via Github.68 Github integration provided a visual
representation of metadata which is then easier to
understand by humans while preserving machine readability.
Later, they integrated the ontology learning with ‘named
entity recognition’ (NER) to automate the extraction of key
scientific data from publications, then organized this implicit
knowledge into a machine and user readable knowledge
graph with the help of a pretrained model, CatalysisIE. This
model was fine-tuned with the addition of new datasets
resulting in improved precision and recall of the model with
regard to the added dataset.70

Tools to record, visualise, and interrogate catalytic data
are becoming available to the community. For example,
CatApp and Catalyst Hub71 are web-based catalytic platforms
developed for data recording and visualisation, although do
not include data analysis tools. Later, Fujima et al. added the
feature of data analysis and prediction in their open source
platform, Catalyst Acquisition by Data Science (CADS)51a,b for
catalysis informatics. It can be used for data repository,
collaboration, and publishing, as an analytic workspace for
visual analysis and for catalyst property prediction with
pretrained machine learning models.

Use of such platforms has been demonstrated for catalysis
design. For example, oxidative coupling of methane (OCM) is
an industrially important method to produce ethylene,
offering an alternative to naphtha cracking routes.72 There is
a 40-year history of catalytic studies of OCM with
conventional methods, but as yet a cost-effective route is
missing.73 CADS was used as a means to reveal the
underlying patterns and trends in the data sets for OCM and
to feed into design of new catalysts.74,75

Later, Nishimura et al. implemented supervised machine
learning using support vector regression (SVR) and Bayesian
optimization (BO) based on expected improvement index on
published literature data, coupling this with systemic high
throughput screening (HTS) experiments. SVR was first used
to identify potential catalysts that could produce more than
15% C2 (ethylene and ethane). However, when more data
including experimental and validation data sets were added
for a second trial, the method could not further improve

Fig. 3 A workflow of catalysis informatics.
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results because the new data did not include standout
discoveries. Bayesian optimization (BO), on the other hand,
gradually improved predictions over three rounds by adding
experimental data after each validation. The results
frequently predicted La2O3-based materials as potential
catalysts with a C2 yield maximum of 16% under the same
test conditions. The limitation of BO was spatial shrinkage
during prediction, which limits the room to explore diverse
options and reduces the chance of serendipitous discoveries.

The choice of exploration and exploitation strategy should
be guided by the context, e.g., the dimensionality and size of
chemical space to be explored, the objective to be met, and
the availability and quality of existing knowledge that can
guide the search. As more tools are developed, workflows will
evolve to include combined use of each tool at the point at
which it is of most use: for example, starting with DoE
approaches to explore a wide space, then the use of BO or
ML approaches when the necessary datasets are available.
The development of new algorithms to explore wide chemical
space and the combination of ML with human intuition
could make the search for better catalysts more effective by
balancing data-driven predictions with creative insights.76

Machine learning models with inverse analysis (where
catalysts can be suggested from desired properties, rather
than starting from a known catalyst and predicting its
behaviour) can be used to suggest new catalysts with desired
activity by uncovering underlying trends and patterns within
the data of published reports.77 Various studies have been
published on material informatics but research on inverse
analysis of heterogeneous catalysis78 is still in its infancy.

Smith et al. used ML frameworks to explore the
predictability limit of catalytic activity based on 27
experimental descriptors that collectively represent catalyst
formulations and reaction conditions for water–gas shift
reactions (WGSR). The framework included principal
component analysis (PCA), which reduces the
dimensionality of the descriptor data while retaining the
maximum information, artificial neural network (ANN),
which summarized the data from PCA and predicted
catalytic activity, and constrained-PCA to predict new
catalyst formulation in unexplored information space. The
framework was applied to 2228 experimental datasets of
WGSR, which systematically guided the design of
experiments and descriptor selection and predicted new
catalyst formulations that reduced cost but retained activity.
They trained the model on catalyst formulation data such
as primary metal, promoter and support, and logarithmic
reaction rate as ‘activity data’ from the literature. The
model was validated using data from reported literature that
wasn't the part of the training data set. They suggested
predictability can be improved by adding more descriptors
such as stability of active site, centre of mass of unoccupied
orbital and d-band centre value, by integrating ML
techniques with the experimental data, and by using first
principles data collection for descriptor from density
functional theory (DFT).79

Suvarna et al. used transformer models, a deep learning
encoder–decoder architecture designed to handle sequential
data such as text,80 to extract synthesis protocols from
literature reports and transform them into structured action
sequences for heterogeneous Fe-based single atom catalysts.
By converting synthesis protocols into structured action
sequences, the model facilitated statistical analysis of
synthesis trends, helping to streamline literature review and
support predictive modelling to accelerate synthesis
planning. The model demonstrated adaptability across
various catalyst types, showcasing its potential use for
diverse applications in heterogeneous catalysis, not just
single atom catalysis. However, inconsistent reporting
standards in protocol documentation still hindered
machine readability. To address this, they proposed
guidelines for standardizing protocol reports to enhance
machine-readability and support digital advancements in
the field.81

Later, the same group accentuated the importance of data
science in the field of catalysis. They reviewed 240
publications from the last decade and categorized them into
two types of study: deductive (that is, going from general
principles to specific conclusions) and inductive (that is,
using observation to form hypotheses), specifically mapping
out structure–property–performance relationships. Based on
this classification they identified the challenges and their
data driven solutions in the field of catalysis, in terms of
catalyst task, data sources and representation, and choice of
algorithm. They suggested the adoption of data science in
catalysis research with the incorporation of “descriptive,
predictive, causal and prescriptive” strategies would
accelerate innovation.82

Such strategies clearly have relevance for biobased
transformations, but thus far have rarely been used for
biomass catalysis. In 2022, Uusitalo et al. demonstrated the
application of such tools for bio-based transformations for
the first time. They used the systematic approach of
mathematical modelling and machine learning. Focussing on
variable selection using regularization algorithms83 that
minimize overfitting, to explain and predict the catalyst
performance of bimetallic catalysts towards the
hydrogenation of 5-ethoxymethyl furfural. They adopted
various ML methods including support vector regression
(SVM), Gaussian process regression (GPR), and decision tree
models to estimate outcomes. The model showed strong
correlation (0.9–0.98) in estimating the conversion, selectivity
and yield. Although, the model outcome was good, the
variable selection methods relied entirely on data-driven
approaches, leaving the physical interpretation of many
variables unclear. Also, some values in the descriptor datasets
were derived from lists of both experimental and simulated
studies, potentially leading to inaccuracies. Furthermore, the
lasso algorithm84 had limitations when handling highly
correlated variables, which were prioritised at the expense of
others, potentially missing significant variables in the
process. They predicted that expanding the descriptor
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dataset, and investigating the exploration capabilities of
models with the addition of relevant descriptors, for
instance, d-band centre value,85 would be fruitful directions
for predicting the optimum catalyst for biomass-based
transformations.86

Data driven optimization of catalytic
processes and exploration of
chemical space for biomass derived
molecules
Process optimization

The optimal catalyst is only part of the picture: process
optimisation is key in any catalytic process. In the case of
catalytic transformation of bio-based molecules, this is
particularly challenging due to the complex structure of
biomass, hence, in addition to finding the highly active,
selective, cost-effective and sustainable catalyst, focus should
be placed on making process optimisation faster, more
selective, and cost effective. Data driven and ML/AI based
approaches can be adopted along with high throughput
experimentation, flow technologies, and real time analysis to
enhance the process performance by facilitating rapid
decision-making and supporting synthetic methods.87 This
can help in translating lab-scale research to industrial-scale
production, facilitating a shift toward a biomass-based
economy. Although ML/AI with high throughput, flow, and
real time analysis has already been adopted for
pharmaceutical chemistry88,89 and catalysis,90,91 very few
examples of its use have been reported for bio-based
transformations.92

Eyke et al. highlighted the importance of synergies of ML
and high throughput techniques towards rapid chemical
space exploration and optimization, using experimental and
analytical data to iteratively improve ML algorithm
performance in a feedback loop. They suggested the merging
of traditional statistical methods like design of experiment
(DoE) with ML models to deliver optimal experiment design
with high dimensional chemical reaction space, taking
advantage of both methods. To reduce the cost of the process
dimensionality, reduction algorithms like principal
component analysis (PCA) can be employed. Bayesian neural
networks can be used to construct probabilistic surrogate
models, and ‘traditional’ algorithms such as neural networks
(NN) and random forests (RF) can be used as surrogate
models to describe and explore the high dimensionality
space that results when many parameters must be
optimised.93

Choosing the most time- and resource-efficient
optimization method can be challenging, but examples of
their use in catalysis offer compelling reasons to try. Install
et al. recently integrated a statistical DoE approach with a
high throughput platform to optimize the solvent
composition for maximum conversion of glucose to methyl
lactate with SnCl4·5H2O. Using this strategy, optimal reaction

conditions (75.9% yield using 7.5% water in methanol) were
determined in just 58 runs.94

Yang et al. adopted machine learning frameworks for
catalyst screening and process optimization for indirect
hydrogenation of CO2 to methanol and ethylene glycol.
Datasets based on catalyst descriptors, i.e. preparation
conditions, operational parameters, and feed conditions were
initially analysed by PCA, then further improved with
additional catalyst descriptor datasets. Among three machine
learning models trialled (RF, NN, and SVR), NN with two
hidden neural layers was found to have the highest
prediction accuracy after optimizing the hyperparameter for
each model with minimum mean square error (MSE), mean
absolute error (MAE), and highest determination coefficient
(R2). Feature engineering was used to remove redundant
features from the model with minimal loss of data and
improved prediction accuracy of the model. Shapley additive
explanation (SHAP) was used to interpret the improved
machine model and predict that space velocity and
hydrogen/ester ratio are the most important factors that
impact the conversion and product yield. ML models with
genetic algorithms were used to maximizes the yield of
products from indirect CO2 hydrogenation system. The
results proposed xMoOx–Cu/SiO2 as the candidate with the
best catalytic activity as compared to other catalytic systems.
However, experimental validation is essential prior to their
industrial application.95 A similar methodology was adopted
by Liu et al. for the hydrogenation of biomass-derived
levulinic acid to γ-valerolactone. ML model analysis with
SHAP predicted that temperature was an important factor for
the hydrogenation of levulinic acid, and genetic algorithms
with multiobjective optimization identified Ru/N@CNTs as a
promising catalyst.96

Wang et al. developed a trained ML model for the
prediction and optimization of catalytic steam reforming of
biomass tar using a database of 584 data points from the
published literature. The RF algorithm predicted the reaction
temperature as the most important factor to influence the
conversion rate of toluene as major component of tar,
followed by support, additive, Ni loading and calcination
temperature. The proposed model was empirically validated
with experimental trials using Ni–Co supported on γ-Al2O3 as
catalyst, and predictions were found to be in good agreement
with the experimental data. The optimal ranges for the key
parameters in the catalytic process were reaction temperature
of 600–700 °C, Ni loading of 5–15 wt%, and calcination
temperature of 500–650 °C, which maximizes toluene
conversion rates. Additionally, they highlighted the
importance of suitable supports and additives which
significantly enhance catalytic performance by providing
more active sites and promoting Ni dispersion, resulting in
improved activity and stability of the catalyst.97

Reproducible process control, e.g., the reliable
maintenance and data logging of mixing, temperature profile,
addition rates, etc., is as important as reproducibility in
catalyst synthesis and formulation; both underpin
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meaningful optimization. In this space, digitalization and
industry 4.0 (ref. 98) are poised to significantly transform
chemicals and materials discovery and development. By
integrating various technologies—such as flow synthesis,
automation, analytics, and real-time reaction control—the
industry is moving toward highly efficient, data-driven
discovery and synthesis protocols.99–103

Flow chemistry enhances control over parameters like flow
rates, temperature, and pressure, resulting in improved
efficiency of the process and sustainability through waste
minimization.104,105 Additionally, flow chemistry supports
integration with downstream processing and enables in situ
process monitoring by capturing large amounts of process
and product data.106–108 Kaisin et al. reported the challenges
in transformation of biomass derived chemicals to
pharmaceutical ingredients in terms of chemical, process,
supply chain and regulatory aspect. In their perspective they
highlighted the benefit of flow in synthesizing the chemicals
in a safer, scalable manner with reduced environmental
impact and improved process efficiency. Incorporation of
downstream PAT analytical techniques can provide the real
time data and control the quality of the product during the
production campaign. However, the varied impurity profiles
of biomass sources and their resultant by-products is still a
major concern.109

Flow chemistry is also finding use in the transformation
of bioderived chemicals into commodity products. Muzyka
et al. used a flow process to produce biobased glycerol
carbonate at large scale with a space time yield of 2.7 kg h−1

L−1 and an environmental factor (E factor)110 as low as 4.7.111

Sivo et al. developed and optimized a continuous-flow
process for producing glycidol from glycerol, addressing
challenges such as long reaction times, harsh conditions,
and unstable intermediates. The optimized process
demonstrated higher yields, improved reaction mass
intensity, and improved sustainability compared to batch
methods. Further exploration enabled integrated preparation
of glycidol derivatives, showcasing protocols for aminolysis,
polymerization, and tosylation reactions, highlighting the
scalability and versatility of the continuous-flow approach.
Techno-economic and life cycle assessments confirmed its
superiority in cost, efficiency, and environmental impact.112

Continuous flow has been used in multiple studies
upgrading biomass-derived glycerol to fine chemicals and
pharmaceuticals.113–120 As yet, routes to upgrade other
platform chemicals to value added chemicals and fuels under
continuous flow conditions are rare, with limited studies
using heterogenous catalysts.121–123

Flow optimisation using downstream PAT tools and ML
algorithms can autonomously adjust reaction conditions like
temperature, pressure, flow rates, and reagent concentrations
in real-time. Such self-optimizing synthesis platforms
minimize human intervention and can accelerate the
identification of optimal reaction parameters, improving
yield and selectivity, and reducing waste. Various examples
have been reported for the automated synthesis of organic

molecules,102,124–128 pharmaceuticals,129 and nanoparticles130–132

enabling selective, cost effective and scalable synthesis of
molecules with the desired properties.

Recently, workflows has been developed using a hybrid
approach of active machine learning with ‘human in the
loop’ to generate informative datasets.133 Kuddusi et al.
adopted this methodology to evaluate Ni- and Co-based
catalysts supported on Al2O3 for the thermo-catalytic
conversion of CO2 to CH4. Researchers conducted 48 catalytic
activity tests within a design space exceeding 50 million
potential experiments, using an automated reactor system to
ensure controlled conditions. Key experimental variables
included temperature, pressure, catalyst composition, and
synthesis conditions such as calcination and reduction
temperatures. The dataset trained three regression
algorithms—Gaussian processes, RF, and extreme gradient
boosting—to predict CO2 conversion, methane selectivity,
and methane space–time yield. Feature importance analysis
highlighted temperature, Ni load, and calcination
temperature as critical factors for catalyst activity.
Experimental validation identified an optimal calcination
temperature range (673–723 K), beyond which catalyst activity
diminished due to structural changes in the material. This
approach, leveraging a modest dataset, achieved a 50%
improvement in methane space–time yield compared to the
training set's maximum. The study demonstrates the
potential of combining active machine learning with
experimental workflows to optimize chemical reactions and
suggests broad applicability to other reactions with diverse
design spaces.134

Chemical space exploration

When datasets are rigorously recorded, discovery and
exploration of new chemical products from catalytic reactions
dovetails with catalyst and process optimisation. AI and ML
tools can be used to design new biomass-derived
replacements for petrochemicals by navigating
multidimensional input and output relationships, e.g.,
candidate structures from desired properties.135 ML
algorithms can analyse vast datasets of biomass-derived
compounds, predict their properties, and suggest novel
molecular structures tailored for specific applications, such
as biofuels, bioplastics, or pharmaceuticals.136 AI-driven
techniques like generative models (e.g., generative adversarial
networks (GANs) or variational autoencoders) and
reinforcement learning enable the exploration of complex
chemical spaces, facilitating the design of molecules from
sustainable feedstocks.137 This approach accelerates
discovery, reduces reliance on trial-and-error
experimentation, and promotes a circular bioeconomy by
optimizing the valorisation of renewable biomass resources.

Batchu et al. highlighted the areas to focus on to explore
and accelerate the manufacturing of high-performance
biomass-based molecules that have no analog in traditional
refineries, advocating the use of retrosynthetic approaches,
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text mining, natural language processing and modern
machine learning models to identify opportunities.
Automated laboratory and simulation data, enhanced
through active learning methods, enable the efficient
generation of thermochemistry and kinetics data, crucial for
developing detailed and validated process models,
understanding product structure–property relationships, and
establishing correlations between catalyst and solvent
descriptors with their performance.92

Chang et al. used such methods to identify bioderived
replacements for aviation fuel and their catalytic synthetic
routes, mostly based on furanics derived from
hemicellulosic feedstock. Automated network generation
and semi-empirical thermochemistry calculations predicted
more than 100 potential sustainable aviation fuel candidates
(C8–C16 alkanes and cycloalkanes) across 300 synthesis
routes. 2-Methyl heptane, ethyl cyclohexane, and propyl
cyclohexane were found to be the most promising
candidates, but all require multiple synthetic steps,
including energy intensive hydrogenation and oxygen
removal steps. Process intensification with multifunctional
catalyst systems was suggested as a means to overcome
these challenges.138

Singh et al. recently showed the potential of machine
learning models for reaction discovery with relatively small
and sparsely labelled datasets. RF methods reliably predicted
catalytic reaction yields and enantioselectivity for asymmetric
hydrogenation of imines. It is difficult to derive molecular
features from experimental data, hence quantum
mechanically derived molecular descriptors (i.e., charge,
frequency, intensity, HOMO, LUMO, and NMR shifts) of
reactants, solvents, catalyst etc. served as input vectors for
feature engineering. The feature learning techniques using
SMILES-based molecular representations and customized
natural language processing (NLP) techniques proven to be a
promising strategy for yield and enantioselectivity
predictions. A transfer learning approach was adopted, where
model was trained on a large data set (105–106 molecules) to
explore latent chemical space, then fine-tuned for targeted
reaction library (102–103 reactions). Additionally, the
exploration of latent space within deep neural networks
offered a promising generative strategy for identifying new
and useful substrates tailored to specific reactions. These
approaches highlighted the potential of molecular ML to
accelerate reaction discovery and optimization.139

ML has been used to improve the synthesis and design of
new biobased polymers for the sustainable energy and fuel
sectors. A review by Abu Sofian et al. reported the state of the
art of ML based biopolymers and highlighted scope for future
development via modification of algorithms or exploring
deep learning models to enhance thermal stability and
mechanical strength and reduce degradation rates.140

In a similar vein, Akinpelu et al. highlighted the
application of machine learning in pyrolysis: from biorefinery
to end-of-life product management. ML methods, particularly
artificial neural networks (ANN), are widely used to study

pyrolysis due to their ability to model a ‘highly nonlinear’
input–output relationship. They highlighted ML's potential to
accelerate research, development, and scalability in biomass
pyrolysis, and recommended its further use in life cycle
assessment (LCA) and technoeconomic analysis.141

It is important to state that LCA and sustainability metrics
are equally important for biomass derived alternative
molecules as for their petrochemical counterparts. LCA is a
methodology used to evaluate the environmental impacts of
a process, system, or product throughout its entire life cycle,
from raw material extraction to disposal.142 The primary goal
of LCA is to provide decision-makers with data to choose
sustainable technology options that meet societal needs.143

Sustainable reaction identification is a complex
interdisciplinary challenge. Weber et al. addressed different
methods for automated discovery and assessment of
sustainable reaction routes for chemicals derived from
renewables and waste feedstocks. These methods explored
the opportunity for circular economy with the help of
chemical data intelligence with focus on data, evaluation
metrics and decision making.144 The major bottleneck for
LCA and sustainability evaluations was found to be
incomplete datasets that hinder mass balance calculations,
and difficulty in linking various data sources such as regional
waste stream composition, pretreatment method and end of
life use. To overcome this, a roadmap for systematic reaction
pathway planning through digitalized chemical data,
sustainability evaluation metrics and decision making has
been suggested.144

Conclusions and future perspectives

Defossilization and moving away from a petro-based industry
can be achieved using alternative molecules derived from
renewable lignocellulosic feedstock—but will require
interdisciplinary collaboration and investment in data-driven
approaches. The catalytic transformation of lignocellulosic
biomass to value added chemicals and fuel precursors is
challenging because of the complex nature of biomass and
their derived molecules. This is further complicated when
using heterogeneous catalysts due to inherent issues with
reproducibility, stability and durability.

Digitalization of the catalytic process is a potential
solution to solve this multidimensional problem. Recording,
sharing, curating, analysing, and using data in advanced
optimization and discovery workflows will impact each step,
from catalyst development and process optimization to the
exploration of alternative bio-based molecules.

In this perspective, we focussed on the state of art in
digital catalysis, considering how these methods can be
adopted for catalytic biomass transformation. Data
frameworks are required to record both catalyst-focussed
data (synthesis and characterization) and reaction-focussed
data (reaction performance). Various frameworks have been
suggested that are being used for heterogeneous catalyst
and material synthesis, and these can be adopted for

Catalysis Science & Technology Perspective

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
ja

nu
ár

a 
20

25
. D

ow
nl

oa
de

d 
on

 1
6.

10
.2

02
5 

10
:5

0:
48

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4cy01525h


1698 | Catal. Sci. Technol., 2025, 15, 1689–1701 This journal is © The Royal Society of Chemistry 2025

catalysis for biomass. To ensure widespread use and
progress in the field, such frameworks should use FAIR
principles, ensure metadata is recorded in both machine
and human readable formats, and be curated to remove
inconsistencies. Ontologies have been used to structure vast
datasets in a layer approach connecting them with each
other and making them searchable; this will be especially
important for the complex reaction processes in biomass
catalysis. In this way, reported literature data can be used
for catalyst design and development, leveraging catalyst
informatics and ML models to discover the optimum
catalyst for a given transformation, and increasing the
chances that biomass will become part of the chemical
supply chain.

The multistep and complex nature of biomass
transformation demands advanced solutions but also
provides challenges that will stimulate advances in digital
catalysis methods and reactor technologies alike. The
integration of AI/ML with high throughput experimentation,
flow reactors, and real time analysis can speed up process
optimization and the exploration of chemical space to
discover new molecules. AI/ML models alongside with DOE
and PCA analysis reduce the cost of the process with the
exploration of wider chemical reaction space. Validating and
improving these models with experimental data is an
important next step for the growing community using such
methods in catalysis.

A major challenge in achieving the digitalization of
catalytic biomass transformation is the lack of available
structured data and metadata. Future research should
focus on recording metadata on available web-based
platforms, and development of data frameworks to record
catalyst- and reaction-centric data with the integration of
AI/ML workflows for process optimization. Additionally,
data on LCA and sustainability metrics is important to
translate lab-based research to the industrial scale and
achieve the desired circular economy. Ultimately, solving
this challenge will require international and
interdisciplinary collaboration between chemists, chemical
engineers, computer and data scientists; the methods
developed in recent years offer the strongest chance that
the 95% of unused lignocellulose feedstock will form the
basis of a biofuel-derived economy.
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