Synergism between metal single-atom sites and S-vacant two-dimensional nanosheets for efficient hydrogen evolution uncovered by density functional theory and machine learning†
Abstract
Efficient electrocatalysts for the hydrogen evolution reaction (HER) are the key to hydrogen-electricity energy conversion. Leveraging density functional theory and machine learning, we herein reveal the synergism between metal single atoms (M-SAs) and S-vacant two-dimensional (2D) MnPS3 nanosheets (Sv-MnPS3). Specifically, M-SAs occupy S-vacancies and activate the neighboring S sites as new active sites for the HER. In turn, Sv-MnPS3 improves the ability of metal-SAs for water dissociation by modulating their magnetic moments. During the HER, H* is generated on metal-SAs and then migrates to neighboring S sites on which H2 is produced, representing catalytic synergism via hydrogen spillover. Among the M1/Sv-MnPS3 candidates, Pd1/Sv-MnPS3 possesses an optimal ΔGH* of 0.01 eV and is both thermodynamically and electrochemically stable. Therefore, the synergism between Pd1 and Sv-MnPS3 enables Pd1/Sv-MnPS3 to be active and durable for the HER. This work provides insights into how to design and understand confined metal-SAs in 2D materials for efficient electrocatalysis.
- This article is part of the themed collection: 2024 Inorganic Chemistry Frontiers HOT articles