Visible-light-driven production of fumarate from CO2 and pyruvate using a photocatalytic system with dual biocatalysts†
Abstract
Fumaric acid is a very useful unsaturated dicarboxylic acid because it is a raw material for unsaturated polyester resin. Fumarate is mainly synthesized currently from petroleum resources, with a large amount of CO2 emitted during its production. Thus, it is desirable to develop fossil-fuel-independent fumarate production methods, in particular those using renewable resources. In this work, visible-light-driven production of fumarate from CO2 and pyruvate with a system consisting of triethanolamine, water-soluble zinc porphyrin, pentamethylcyclopentadienyl-coordinated rhodium complex, NAD+, malate dehydrogenase (NAD+-dependent oxaloacetate-decarboxylating) and fumarase was developed. Our work with this system was, to the best of our knowledge, the first example of achieving the fixation of CO2 to pyruvate using electron accumulation in NAD+ with light energy as well as the conversion of the resulting fixed pyruvate to an unsaturated dicarboxylate.
- This article is part of the themed collection: Biocatalysis: A cross-journal collection