Eco-friendly and ultrathin solar cells featuring nanocrystals: advances and perspectives
Abstract
Eco-friendly nanocrystals have attracted worldwide attention in recent years due to the ultrahigh absorption coefficient, broad absorbance range and non-toxic atoms of heavy metals e.g., lead and cadmium. With these benefits, the photovoltaic performance of eco-friendly nanocrystal solar cells (AgBiS2) has reached over 9% and they have great potential for application in the field of nanocrystal solar cells. In this review, we provide an overview of the synthesis, ligand exchange, device structure and stability of eco-friendly solar cells with the aim of advancing commercial applications. Firstly, we discuss the synthesis methods of eco-friendly nanocrystals and highlight the key elements for high-quality nanocrystals. Thereafter, ligand exchange strategies are summarized to further enhance the performance of AgBiS2 solar cells. Subsequently, we focus on device structure and present an in-depth discussion on the photovoltaic stability to balance the performance and stability of AgBiS2 solar cells. Finally, the remaining challenges and our insights are proposed to further advance the development of eco-friendly solar cells based on AgBiS2 nanocrystals.
- This article is part of the themed collections: Materials Chemistry Frontiers Emerging Investigator Series 2022–2023, 2023 Materials Chemistry Frontiers Review-type Articles and 2023 Materials Chemistry Frontiers HOT articles