Modulation and self-assembly of nanoparticles into bismuth molybdate nanosheets as highly efficient photocatalysts for ciprofloxacin degradation†
Abstract
2D bismuth molybdate nanosheets with tunable shape and size were synthesized by a surfactant-assisted hydrothermal method and their photocatalytic performances were investigated. The characterization results show that bismuth molybdate materials consist of regular nanosheets that were self-assembled from uniform nanoparticles, and their sizes can be controlled by optimizing the synthesis conditions. The results of photocatalytic degradation indicate that the as-synthesized bismuth molybdate material exhibits excellent photocatalytic activity and good degradation rate of multi-pollutants under visible light irradiation. Notably, the degradation rates of ciprofloxacin and phenol reached 99.4% and 78.6% within 120 min, respectively, and the maximum reaction rate constants increased by 20 times compared to that of bismuth molybdate nanosheets with larger size, which is mainly attributed to the narrow energy gap and outstanding photoelectrochemical properties and improvement of charge separation efficiency of nanoparticles. As-synthesized bismuth molybdate nanosheets are expected to be a potential candidate for the degradation of multi-pollutants in actual environmental remediation.
- This article is part of the themed collection: Environmental Remediation