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We herein report experimental applications of a novel, automated computational approach to chemical

reaction network (CRN) identification. This report shows the first chemical applications of an autonomous

tool to identify the kinetic model and parameters of a process, when considering both catalytic species

and various integer and non-integer orders in the model's rate laws. This kinetic analysis methodology

requires only the input of the species within the chemical system (starting materials, intermediates,

products, etc.) and corresponding time-series concentration data to determine the kinetic information of

the chemistry of interest. This is performed with minimal human interaction and several case studies were

performed to show the wide scope and applicability of this process development tool. The approach

described herein can be employed using experimental data from any source and the code for this

methodology is also provided open-source.

Introduction

Rapid process development can be critical for the commercial
success of new chemical products. For example, within the
pharmaceutical industry time-to-market from initial discovery
is one of the most important factors for companies to
maximise commercial viability.1 As the cost of this product
development can be up to 35% of the total cost of bringing a
new drug to market,2 there is an emphasis on fast and
efficient process optimisation and scale-up of active
pharmaceutical ingredients (APIs).3–5 Ideally to achieve this a
detailed understanding of all elements of the process in
question is required, including fundamental synthetic
chemistry considerations such as the reaction mechanism
and kinetics, and the effects of chemical engineering aspects
such as transport phenomena (transfer of heat, mass etc.).
Statistical techniques are commonly used to map the design
space during process development in modern industrial labs
typically through a design of experiments (DoE) approach,6–8

with closed loop algorithm methods also becoming more
popular.9–11 However, a more robust description of the
process can be determined by developing an accurate
mechanistic rate model of the chemical reaction steps.”12,13

Such kinetic models can be complex and occur over many
reaction steps, involving many measurable and
immeasurable intermediates. This allows quantitative
chemical synthesis information to be obtained, allowing
classical reaction engineering principles to be applied to
shorten process development times and lower costs.14 In
these instances, obtaining stoichiometric and kinetic
descriptions of the individual transformations is often more
important than detailed mechanistic insights and
rationales.15 For a system involving multiple reactions, each
featuring multiple species with differing stoichiometric
coefficients and respective kinetic parameters, this is referred
to as a chemical reaction network (CRN). Upon
determination of a CRN, mathematical relationships are
thereby established between participating species, allowing
simulations and process engineering to drive reaction
understanding and ultimately optimise chemical systems
through a reduction in laboratory experiments.16–18 However,
in this report we will be explicitly focussing on the
identification of the process CRN from apparent kinetics; for
further discussions on the scale-up of chemical processes,
refer to work by Levin19 and Khang and Levenspiel.20

There are many reports in the literature involving the use
of computation to evaluate aspects of a CRN,21–27 many of
which are based on work reported by Aris and Mah,28 then
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later Bonvin and Rippin.29 However, there are no CRN
identification tools to date that identify catalytic reaction
pathways or non-integer species orders, which greatly limits
the applicability of these techniques for many chemical
systems. Other techniques have also emerged, such as the
use of model-based design of experiments (MBDoE) for
various applications.30–35 Whilst there is an increased scope
for this methodology, assigning a model may be difficult for
noisy systems due to standalone measurements in otherwise
empty chemical space.36 Furthermore, expert chemical
intuition is necessary in compiling initial model candidate
sets for evaluation and many models may be excluded based
on their presumed inability to occur.

We recently illustrated the first experimental application of
a comprehensive CRN determination methodology,37 initially
reported by Tsu et al.14 This machine-learning-based tool
identifies and evaluates all possible kinetic models, then uses
statistical analysis to establish which model is most likely to be
correct. The user simply inputs the mass of each participating
species and experimental data, then the approach
autonomously identifies the most likely CRN. This paper
reports significant improvements to this technique, including
how the scope of application has been expanded to zero- and
non-integer-order reactions and catalytic processes. This work
represents the first CRN determination tool in the literature
with these capabilities. Two new experimental case studies are
herein reported and one further case study was revisited due to
the applicability of this tool to its unusual and complex kinetic
model. The methodology can be used with data from any
source and any analytical technique, although this work
features exclusively reactions in batch using both NMR
sampling and HPLC analysis. This upgraded open-source tool
serves as a comprehensive, automated resource for the process
development of almost any chemistry, where scalable process
understanding can be achieved with minimal need for high-
level chemical intuition.38

The approach

It is firstly important to note that following from the initial
inputs of the measurable species of interest and the
experimental time-series data, the approach behaves as a
black box to identify the most likely reaction model and
corresponding kinetic parameters. Initially, every possible
chemical transformation is identified based on mass balance
alone using an integer linear programming (ILP) optimiser.
All feasible rate laws for these reactions are then constructed
– this relates to different allowed species orders: 0, 0.5 and 1.
These species orders are considered as they are the most
likely to be encountered, whereas further non-integer orders
are not considered due to their rarity and significantly
increased computational burden their inclusion would cause.
If a catalytic species is also present, this is incorporated into
the respective rate laws at this point. Each of these reactions
can then be treated as building blocks for potential CRNs.
Every combination of these reactions (and therefore every

possible CRN) is then built and saved to a CRN library,
therefore describing the chemistry in every feasible way – this
stage of the approach is referred to as the model generation
stage. The total number of possible models, η, is equal to the
sum of the binomial coefficients for every number of
individual reaction rate laws in the model, up to the total
number of possible reactions, δ, as shown in eqn (1):

η ¼
Xδ
i¼1

δ

i

� �
(1)

The second stage of the approach relates to the suitability of
each individual CRN, or model, to the supplied experimental
data, referred to as the kinetic fitting stage. A cycle is
conducted as a CRN is loaded, then a gradient-based local
minimisation algorithm is used to optimise kinetic parameters
and fit simulated kinetic curves to the data points using the
CRN's respective rate laws, thereby measuring the convergence
of the CRN to the chemical data. These simulated kinetic
curves are referred to as ordinary differential equations (ODEs),
as they are a result of solving a linked set of differential
equations. The sum of squared error (SSE) measurement
between the measured (experimental) and estimated
(simulated) concentrations is the objective function that is
minimised to ensure maximum convergence of the model to
the data. This SSE value is calculated using eqn (2), where NData

is the number of data points sampled, Ej is the jth experimental
point and Sj is the jth simulated point:

SSE ¼
Xδ
i¼1

XNData

j¼1

Ej − Sj
� �2 (2)

This sequence is repeated until all CRNs have been assessed.
The determination of the most likely CRN from the library is
finally conducted by evaluating the corrected Akaike's
information criterion (AICC), which is used as a statistical
measure to identify the simplest models that show the highest
convergence to experimental data.39 This is calculated using
eqn (3):

AICC ¼ NData· ln
SSE
NData

� �
þ 2δþ 2δ δþ 1ð Þ

NData − δ − 2
þ NData· ln 2πð Þ þ NData (3)

An overview of the approach is shown in Fig. 1. Although
herein used as a black box, the approach is open-source38 and
a further publication will detail all working components and
the considerations made in building the methodology.

This approach serves as an automated tool that removes
high-level chemical expertise from both model and kinetic
parameter determination during process development.
Conducting this model discrimination, without chemical
intuition, creates a system whereby a model is identified
based purely on the most statistically accurate and
quantitative physical-organic description of the chemistry.
This allows experts to spend their human resource on more
challenging aspects of process development that cannot be
otherwise automated, including critically appraising the
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resultant list of model candidates. For example, after this
initial model discrimination experts can alter the identified
CRN based on perceptions of chemistries that are unlikely to
be true, as model terms may be included due to anomalies in
the experimental data provided. More advanced engineering
principles may also be applied or further experiments may be
prescribed by experts to discriminate between the list of
ranked CRNs generated.

Results and discussion

The approach can receive inputs from many different analytical
sources and the implementation, scope and accuracy of this
methodology was demonstrated via several pharmaceutically
relevant case studies. The first case study of interest is the SNAr
reaction of 2,4,6-trichloropyrimidine, 1, with ethyl
4-aminobutanoate, 2, to form the major 4-substituted product,

Fig. 1 An overview of the approach, consisting of two main stages: model generation and kinetic fitting. Every feasible reaction model based on
mass balance is assembled and subsequently evaluated, optimising the kinetic parameters to maximise convergence to the experimental data.
Each model is also assigned an AICC evaluation, from which the most likely CRN is obtained.

Scheme 1 The presupposed reaction model of the SNAr case study.
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3, and the minor 2-substituted product, 4, and forming HCl, 5,
after each step - this is shown in the presupposed model in
Scheme 1. As the desired major product from this reaction can
be further functionalised to synthesise bioactive derivatives of
pharmaceuticals,40,41 this initial transformation is of interest in
the transfer of these molecules to scale up, meaning that kinetic
information would be very useful for process development.

Experiments were undertaken at various temperatures
between −25 °C and 50 °C using an NMR tube within a 500
MHz NMR machine with a constant acquisition rate, thereby
obtaining complete reaction profiles. This experimental data
could then be inputted into the computational approach, as well
as the species involved (1–5) to identify all possible elementary
reactions. Every combination of these reactions (in every form of
their corresponding rate laws) were then constructed and
comprehensively assessed, resulting in 3320 unique model
evaluations. It was found via AICC analysis that the most likely
model is the reaction model shown in Scheme 1 with a first-
order dependence of both 1 and 2 in forming the major and
minor products. The approach also determined the kinetic
parameters of the transformation to the major product: k25°C =
0.499 ± 0.006 M−1 min−1, Ea = 44.19 ± 0.57 kJ mol−1 and to the
minor product: k25°C = 0.384 ± 0.009 M−1 min−1, Ea = 36.57 ±
0.88 kJ mol−1. In this example the user has only inputted the
experimental data, the molecular weights of each of the species
and indicated that the reaction is not catalytic. All kinetic
analysis was then performed autonomously, producing the list
of ranked CRNs to be evaluated by a trained chemist shown in
Table 1. After appraisal, this newly obtained information can
subsequently be used to significantly shorten the overall process
development time during pharmaceutical manufacture. The
top-ranked model and the corresponding kinetic parameters
allowed a fit to the experimental data with an average residual
of less than 0.3% and is shown in Fig. 2. Full experimental
details and raw data can be found in the ESI† (Section 3).

It is clear from the kinetic plots that the fit of the ODEs to
the experimental data do not result in normally-distributed
residuals. This could be for one of many reasons but is most
likely due to either NMR integrations errors, evaporation of
solvent (CD3OD) into the headspace at higher temperatures or
changes in solvent viscosity at these differing temperatures. It
is also possible that liberation of HCl as the reaction progresses

forms rapid equilibria with the base, NEt3, and partial
protonation of the nucleophile leading to reduced reactivity.
Although this approach can automatically determine the most
likely reaction model and kinetic parameters from
experimental data, all of these factors must still be considered
by a trained chemist upon completion of the computation to
confirm the methodology output. In this case, however, the
residuals are only a small consideration and it can be observed
that the model still provides a good fit to the data. This kinetic
information can then be used to optimise this process for the
highest yields of the 4-substituted product, 3, when scaling up
production of the material.

The next case study conducted was a chemical system
featuring the protection of an amino acid for further
functionalisation, where alanine methyl ester (Al-Me), 6,
reacts with 9-bromo-9-phenylfluorene (PfBr), 7, to form the
protected amino acid (Pf-Al-Me), 8, and hydrobromic acid, 9,
as shown in Scheme 2 as a presupposed model. PfBr is the
reagent used to introduce the 9-phenylfluorene (Pf)
protecting group in synthesis. Pf is a pharmaceutically
relevant and bulky protecting group, that can be introduced
as a more acid stable alternative to the more commonly used
trityl group.42,43 This case study is the protection step
involved in the total synthesis of (S)-eleagnine from
L-alanine. Therefore, understanding this transformation by
performing kinetic analysis would lower costs and accelerate
process development in the overall bioactive alkaloid
manufacture,44 following promising reports of potent
analgesic properties.45

Three experiments were run between 30 °C and 40 °C in a
batch vessel, then the four identified species (6–9) and all
experimental data were inputted into the computational
approach. In this system a heterogeneous base, K3PO4, was
added to remove the HBr as it formed. Two feasible mass-
balance-allowed reactions were calculated, then each
combination of these reactions (in every variant of their rate
laws) were assessed by the approach automatically, resulting in
30 unique model evaluations. The most likely representation of
the model was identified by the approach as the presupposed
forward reaction shown in Scheme 2, with a first-order
dependence on PfBr (7) and a zero-order dependence on Al-Me
(6). This has not been reported elsewhere in the literature, but
this discovery makes chemical sense as the bulky aromatic
rings would stabilise the cation formed, should the reaction
proceed via a traditional SN1 mechanism; this means that the
rate-determining step is likely to be the loss of the bromide
ion, followed by a fast nucleophilic addition by the alanine
methyl ester. The approach also determined the kinetic
parameters of this transformation to be k35°C = 1.06 × 10−2 ±
0.01 × 10−2 min−1, Ea = 62.91 ± 0.23 kJ mol−1. This example
further proves how using this automated methodology in
conjunction with chemical study helps to both elucidate
reaction mechanisms and gain process understanding for real-
life applications. The top-ranked model and corresponding
parameters allowed a fit to the experimental data with an
average residual of less than 0.4% and is shown in Fig. 3. Full

Table 1 A ranked list of reaction models generated from the
computational approach, showing also the kinetic parameters for each
model, the fit to the experimental data using the sum of squared error
(SSE) of fitted residuals and model scoring using AICC. α is a variable for
each model depending on the overall model order

Rank Reaction model

Kinetic parameters

SSE/103 M AICCk25°C/M
α min−1 Ea/kJ mol−1

1 1 + 2 → 3 + 5 0.499 44.19 1.614 −51.91
1 + 2 → 4 + 5 0.384 36.57

2 1 + 2 → 3 + 5 0.407 40.61 3.723 −48.57
1 + 20.5 → 4 + 5 0.073 31.01

3 1 + 2 → 3 + 5 0.466 42.25 3.777 −48.51
10 + 2 → 4 + 5 0.017 27.56
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experimental details, raw data and model rankings can be
found in the ESI† (Section 4).

The final case study explored was the chemical system
involving maleic acid, 10, reacting with methanol, 11, to form
the monomethylated maleic acid ester (mono-product), 12, and
the dimethylated maleic acid ester (di-product), 13, each
liberating a molecule of water, 14, as shown in the presupposed
model in Scheme 3. Our collaborators at AstraZeneca were
interested in this reaction following the contamination of a
batch of an API maleate salt with the corresponding
monomethyl maleate salt, as this contamination could be
mitigated if the impurity formation was well understood.

Kinetic experiments were run using this system and the
findings were published, as it was found that the reaction
forming the mono-product was self-catalytic.46 In this case,
the reaction was found to be catalytic with an order of 0.5,

meaning that the overall order with respect to the maleic acid
was 1.5 in forming the mono-product. The consecutive
reaction forming the di-product is also catalytic with respect
to the maleic acid with a 0.5 order dependence. As methanol
is the solvent in this reaction with an effective concentration
of ∼24 M, pseudo-order conditions are assumed and rate
laws with non-zero-order dependence on methanol were
removed from consideration for simplicity. Although the
kinetics of this process are now known and reported, it took
several months for physical-organic chemists to decipher this
model as the reactivity is not immediately intuitive.
Therefore, this case study was run to validate the approach in
elucidating non-intuitive reaction models, and how this
methodology can serve as a viable, automated substitute for
many hours spent on a project by experts that could be
working on other aspects of process development.

Fig. 2 Results from the four kinetic experiments (at −25 °C, 0 °C, 25 °C and 50 °C) in the SNAr case study in CD3OD, where: = 2,4,6-
trichloropyrimidine, = major product, = minor product, = 2,4,6-trichloropyrimidine (ODE), = major product (ODE), = minor product (ODE).

Scheme 2 The presupposed reaction model of the PfBr protection case study.

Reaction Chemistry & Engineering Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
m

áj
a 

20
21

. D
ow

nl
oa

de
d 

on
 3

0.
9.

20
24

 7
:0

4:
33

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d1re00098e


React. Chem. Eng. This journal is © The Royal Society of Chemistry 2021

Five experiments were conducted in batch at differing
starting concentrations and temperatures in the range of 40
°C to 60 °C and analysed using 1H NMR sampling. This
experimental data and the five species (10–14) were inputted
into the approach, resulting in six mass-balance-allowed
transformations identified. The catalyst was defined, then
every combination of these catalytic reactions (and
corresponding rate law variants) were compiled into different
reaction models, resulting in 5086 automatic unique model
evaluations. Each of these models were then ranked based on
their AICC and it was found that the most likely
representation of the system is the reaction model shown in
Scheme 3, but each step is catalysed by maleic acid with an
apparent species order dependence of 0.5. These are the
same findings that our collaborators made during their
kinetic analysis, as they also employed a pragmatic
approximation of a 0.5 catalytic order in maleic acid due to
the observation of specific acid catalysis. The approach also
determined the kinetic parameters of this transformation to
be: kmono 50°C = 3.85 × 10−3 ± 0.01 × 10−3 M−0.5 min−1, Ea =
72.61 ± 0.12 kJ mol−1 and kdi 50°C = 4.66 × 10−4 ± 0.01 × 10−4

M−0.5 min−1, Ea = 69.74 ± 0.10 kJ mol−1. These parameters are
in agreement with those obtained by our collaborators. This
model and the corresponding kinetic parameters allowed a
fit to the experimental data with an average residual of less

than 0.2% and two experimental fittings at 50 °C are shown
in Fig. 4. Full experimental details, raw data and model
rankings can be found in the ESI† (Section 5).

As the model was already identified by our collaborators,
this methodology has corroborated their findings and shown
that process understanding can be accelerated using this
approach. This approach automatically identified the correct
reaction model in ∼17 hours of computational time, whereas
the more traditional science-led approach took appreciably
longer with significant human resource required. Clearly the
use of this comprehensive model-based approach would be
an asset to kinetic specialists during similar case studies
when there is significant time pressure to find robust
solutions to manufacturing problems identified.

Conclusion

It has been shown from these case studies that in using this
computational methodology as a black box approach,
scalable process understanding can be automatically
achieved without the need for high-level chemical intuition
in the model determination and parameter estimation steps.
The widened scope of this new approach has been proven to
be effective in three experimental case studies, each with
differing rate laws and kinetic structural motifs. The
efficiency and accuracy of the approach remain robust in all
cases, when observing ‘typical’ kinetic models where each
species has a first-order dependence, for zero-order and non-
integer rate laws and for catalytic species of variable integer-
and non-integer-orders.

It has also been shown from these case studies that using
this methodology can greatly accelerate process development
and reduce the workload of kinetic analysis for physical-
organic chemists. After experimentation, all kinetic analysis

Fig. 3 Results from the kinetic experiments in the PfBr protection case
study in 50:50 acetonitrile/dichloromethane, where red plots indicate
PfBr concentrations and blue plots indicate Pf-Al-Me concentrations.
At 30 °C: = experimental data, = ODE. At 35 °C: = experimental
data, = ODE. At 40 °C: = experimental data, = ODE.

Scheme 3 The presupposed reaction model of the maleic acid case
study.

Fig. 4 Kinetic profiles for two kinetic experiments at 50 °C in
methanol, with the initial concentration of maleic acid at 0.4 M and
0.8 M. At 0.4 M: = maleic acid, = maleic acid (ODE), = mono-
product, = mono-product (ODE), = di-product, = di-product
(ODE). At 0.8 M: = maleic acid, = maleic acid (ODE), = mono-
product, = mono-product (ODE), = di-product, = di-
product (ODE).
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can be implemented autonomously whilst experts focus on
other aspects of process development. After the
computational evaluations have finished running, these
experts can then work in conjunction with the approach to
identify which models are the most likely to be statistically
and scientifically correct as well as determine if further
studies are necessary. The increased breadth of scope of this
reported approach serves as an open-source enabling tool in
discriminating kinetic models, thereby greatly reducing the
time and cost barriers to complete process understanding.
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