Electrically conductive 1D coordination polymers: design strategies and controlling factors
Abstract
Due to the easy functionality and structural diversity of coordination polymers (CPs) coupled with superior thermal stability, many researchers have been prompted to explore the opportunity of introducing these hybrid materials as active components in various electronic devices, such as light emitting diodes (LED), solar cells, field effect transistors (FET), and Schottky barrier diodes (SBD). Therefore, the judicious selection of the structural components of CPs is directly related to their structure–property relationship and applications. One-dimensional (1D) CPs have recently emerged as excellent electrical conductors and are gaining enormous attention owing to their simple chain-like coordination arrays. In this article, we review the rational design strategies for synthesising 1D CPs and also point out the structural factors that affect the charge transport properties as well as the electrical conductivity of these materials.
- This article is part of the themed collections: Spotlight Collection: Inorganic Molecular Electronics and 2020 Frontier and Perspective articles