
Analytical
Methods

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
se

pt
em

br
a 

20
21

. D
ow

nl
oa

de
d 

on
 1

.1
1.

20
25

 3
:3

2:
48

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Smartphone-bas
aInstitute for Measurement Systems and Se

Munich, Munich 80333, Germany
bWest China School of Basic Medical Sciences

Chengdu 610041, China. E-mail: jiangnanso
cIstituto Italiano di Tecnologia, 16163 Geno
dDepartment of Chemical Engineering, Imper

E-mail: a.yetisen@imperial.ac.uk
eState Key Laboratory of Advanced Technolo

Wuhan University of Technology, Wuhan 43
fDepartment of Mechanical Engineering, Kha
gHeinz Nixdorf Chair Biomedical Electroni

Munich, Munich 81675, Germany
hDepartment of Mechanical Engineering, K

Turkey

† Electronic supplementary informa
10.1039/d1ay01209f

Cite this: Anal. Methods, 2021, 13, 4361

Received 16th July 2021
Accepted 23rd July 2021

DOI: 10.1039/d1ay01209f

rsc.li/methods

This journal is © The Royal Society o
ed colorimetric detection system
for portable health tracking†

Samira Balbach,a Nan Jiang, *b Rosalia Moreddu, c Xingchen Dong,ad

Wolfgang Kurz,a Congyan Wang,a Jie Dong,a Yixia Yin,e Haider Butt,f

Martin Brischwein,g Oliver Hayden,g Martin Jakobi,a Savas Tasoglu,h

Alexander W. Kocha and Ali K. Yetisen *d

Colorimetric tests for at-home health monitoring became popular 50 years ago with the advent of the

urinalysis test strips, due to their reduced costs, practicality, and ease of operation. However, developing

digital systems that can interface these sensors in an efficient manner remains a challenge. Efforts have

been put towards the development of portable optical readout systems, such as smartphones. However,

their use in daily settings is still limited by their error-prone nature associated to optical noise from the

ambient lighting, and their low sensitivity. Here, a smartphone application (Colourine) to readout

colorimetric signals was developed on Android OS and tested on commercial urinalysis test strips for pH,

proteins, and glucose detection. The novelty of this approach includes two features: a pre-calibration

step where the user is asked to take a photo of the commercial reference chart, and a CIE-RGB-to-HSV

color space transformation of the acquired data. These two elements allow the background noise given

by environmental lighting to be minimized. The sensors were characterized in the ambient light range

100–400 lx, yielding a reliable output. Readouts were taken from urine strips in buffer solutions of pH

(5.0–9.0 units), proteins (0–500 mg dL�1) and glucose (0–1000 mg dL�1), yielding a limit of detection

(LOD) of 0.13 units (pH), 7.5 mg dL�1 (proteins) and 22 mg dL�1 (glucose), resulting in an average LOD

decrease by about 2.8 fold compared to the visual method.
Introduction

The modern approach to global health is largely focused on the
development of portable diagnostic systems for infectious and
chronic diseases.1–3 Rapid and low-cost testing platforms play
an essential role in effectively controlling disease onset,
progression and transmission.4,5 This concept has been partic-
ularly relevant in the past decades, with the worldwide diffusion
of numerous diseases and infections.6–8 Besides infectious
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diseases, chronic diseases are a global health burden which
would benet from the development of effective point-of-care
medical technologies and continuous monitoring methods.9

Paper-based assays were regarded as promising in the last 50
years, due to their inexpensive nature and fast analysis time.10,11

However, only a few of them have hit the market and are
employed on a daily basis, due to the lack of standardization,
convenient integration, and readout methods. Paper micro-
uidic sensors were also developed to aid the diagnosis of
metabolic disorders, diabetes, and cancer.12–15

The concept of at-home self-screening was explored from
multiple perspectives throughout the years, leading to the devel-
opment of different types of devices depending on the application.

The main criteria include the choice of the bodily uid to
test, the sensing technology, and the modality of interaction
between the device and the uid. Implantable devices or patch
needles were demonstrated to aid the screening of blood and
interstitial uid.16 Dermal sensors based on colorimetric inks
for acidosis and diabetes were demonstrated.17 Tears have
recently emerged as a uid that can provide information about
the ocular health status of an individual, by expressing different
patterns of biomarkers.18 Wearable contact lenses were inves-
tigated as the vehicle of integration, to monitor the ocular
temperature and tear markers via colorimetric methods.19–23
Anal. Methods, 2021, 13, 4361–4369 | 4361

http://crossmark.crossref.org/dialog/?doi=10.1039/d1ay01209f&domain=pdf&date_stamp=2021-10-06
http://orcid.org/0000-0001-8394-3247
http://orcid.org/0000-0002-0332-1606
http://orcid.org/0000-0003-0896-267X
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ay01209f
https://pubs.rsc.org/en/journals/journal/AY
https://pubs.rsc.org/en/journals/journal/AY?issueid=AY013038


Analytical Methods Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
se

pt
em

br
a 

20
21

. D
ow

nl
oa

de
d 

on
 1

.1
1.

20
25

 3
:3

2:
48

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Although the colorimetric analysis can be simply performed
through visual comparison,24 this only provides qualitative
information, and quantitative measurements heavily rely on
bulky and costly equipment which inevitable increases the
analysis time.25 Recent efforts in quantitative readouts of optical
signals were put on the development of smartphone-based
approaches, to simplify the real-time analysis of biomarkers
whilst reducing the costs.26,27 However, the accuracy of smart-
phone readouts of colorimetric signals is affected by imaging
angle and distance from the sample, ambient light condition,
and parameters of the smartphone camera.24 For example, two
smartphone applications were developed to readout urine test
strips.26,27 The rst approach was based on the transposition
from the RGB to HSV space and allowed to minimize the effect
of ambient lighting.26 However, it was solely calibrated using
the reference points provided by the test strip manufacturer.
This approach allows to automatize the readout method but
keeps the same sensitivity of the visual readout. The second
approach involved the use of the CIE 1931 chromaticity diagram
for color visualization.27 However, it lacks in introducing a way
of cross-correlating the smartphone app output with the
proposed chromaticity diagram method.

Here, a customized smartphone application (Colourine) was
developed for Android OS to quantify pH, glucose and proteins
in commercial urine strips. The algorithm merges the two
approaches discussed earlier to provide a mean of calculating
urine analytes concentrations by introducing the nearest
neighbor algorithm. The algorithm maps the newly acquired
color in the CIE chromaticity space and compares it with the
reference color. The exibility of this approach allows the app to
be programmed with a larger number of reference points
compared to the ones provided in the commercial reference
chart, hence it substantially increases the sensitivity. This
method is coupled to the RGB-to-HSV transposition approach,
which considers the intensity and saturation of the detected
colors, and in turn allows to minimize the optical noise
resulting from ambient light contributions. This is further
strengthened by introducing a self-calibration step which is
performed by asking the user to take a photo of the commercial
reference chart prior to each measurement. The application
outputs the concentration value and returns them in the form of
trends. It enables tracking diagnostic records by storing patient
information and previous test results. This technology may be
extended to other sensing technologies, including uorescence
and diffraction, and nd application as a readout method for
continuous health tracking devices based on optical sensors.

Material and methods
Chemicals

pH buffer solutions were purchased from Merck (pH values 5.0,
5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0). D-(+)-Glucose (99.5%), bovine
serum albumin (lyophilized powder, 96%), and phosphate-
buffered saline (PBS) were purchased from Sigma-Aldrich and
used without further purication. The Laboratory TranslaTUM
provided deionized (DI) water. Cobas® Combur3Test® strips were
purchased by Roche Diagnostics (GmbH, Mannheim, Germany).
4362 | Anal. Methods, 2021, 13, 4361–4369
Preparation of buffer solutions

Protein and glucose buffer solutions were obtained by dissolv-
ing D-(+)-glucose or bovine serum albumin (BSA) in PBS at pH
7.40. BSA buffers were prepared to yield protein concentrations
of 30 mg dL�1, 65 mg dL�1, 100 mg dL�1, 200 mg dL�1, 300 mg
dL�1, 400 mg dL�1, and 500 mg dL�1. Glucose buffer solutions
were prepared to yield concentrations of 2.8 mmol L�1,
4.12 mmol L�1, 5.5 mmol L�1, 11.26 mmol L�1, 17 mmol L�1,
27.5 mmol L�1, 36.02 mmol L�1, 44 mmol L�1, and 55 mmol
L�1.

Hardware

The smartphone app was implemented on a Samsung Galaxy
A20e (Samsung Electronics, GmbH) running Android 10.0 OS.
Color Name app was used to check the RGB colors captured
with the smartphone camera to obtain the graphs.

Algorithm development platform

The soware was developed in C++, Java, and XML languages on
Windows 10 OS. Image processing algorithms were developed
in C++ using the integrated development environment Micro-
so Visual Studio 2019 and the open-source library OpenCV
4.3.0. The layout for the user interface was created in XML and
tested in Java, both running on API 28 in Android Studio 4.0.
The C++ code algorithm was integrated in Android Studio by
using Java Native Interface (JNI) framework. CMake was used as
the complementary tool to JNI and provide a working interac-
tion between Java and C++. The Android Native Development
Kit (NDK) was used for development, debugging, and compile.

Image acquisition and data pre-processing

The reference chart and test strip photographs taken by the user
were ltered to isolate and dene the color areas, i.e. the
sensors. Morphological transformations were implemented in
OpenCV. Rectangles were sorted into rows and columns to
provide a multiplexed readout. The newly acquired colors were
then compared with the reference chart.

Concentration analysis using colorimetric signals

To quantify the digital color information based on the image,
two analysis algorithms with color processing and comparison
were implemented on the CIE 1931 chromaticity space, using
the RGB (red, green, blue) and HSV (hue, saturation, value)
color models. In the CIE space, a color is uniquely identied by
its (x, y) coordinates and it is plot in the diagram. The color
point was transferred from the RGB to the HSV space, and
further plot in the CIE 2D chromaticity diagram. The newly
acquired point was compared to the reference color points
based on the nearest neighbor algorithm and linear proportion,
where the distances are calculated. Hue states the color shade,
hence it represents the primaries and their composition, indi-
cated as a number from 0 to 360�. This also implies that the H
value is independent of the color intensity, i.e. the luma is
segregated from the chroma. The S value in the HSV space is
expressed as a percentage 0 to 100 and it indicates the grey
This journal is © The Royal Society of Chemistry 2021
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components. The higher the saturation, the lower the grey
percentage. The V component in the HSV space expresses the
color brightness with a percentage, where 0 is black and 100 is
white. Since the luma can be affected by varying lighting
conditions, the HSV color space was implemented to minimize
the environmental background. In the RGB space, every
component (red, green, blue) is related to a color contribution,
making it harder to lter out external noise. For both evaluation
algorithms, the estimated analyte concentration is returned as
a result to the user via the user interface of the smartphone
application. These results can be compared to the given refer-
ence values in the application to gather a diagnostic report.
Details can be found in ESI and ESI Fig. S5 and S6.†
Calculation of the limit of detection

Individual LODs for each analyte (n) were calculated using the s
method:28

LODn;l ¼ 3� stdevðnÞ
m

;

where stdev is the standard deviation and m is the slope of the
readout curve (linear trendline, y¼mx + q) of the algorithm. The
Fig. 1 Visualization of the image processing on the C++ algorithm. All im
(A) Original image captured and uploaded by the user. (B) Image after dila
to-HSV color space shift, implemented with the transposition function. (E
(G) Image after the erosion function. (H) Image after the masking functio
between (G) and (H). Scale bars: 5 mm.

This journal is © The Royal Society of Chemistry 2021
average of the CIE-based and HSV-based LODs was taken for
each analyte.

Results

The Colourine smartphone application (app) comprises two key
building blocks: the algorithm logic, based on the CIE and HSV
color models, and the user interface (UI). The workow requires
the user to proceed by the following steps: capture the reference
chart provided by the manufacturer and an unused test strip,
perform a urinalysis test, and capture the tested strip. The
results are obtained by comparing the tested strip color areas
with the reference color areas and are displayed in the user
interface.

System development and calibration

The app was designed in Microso Studio and Android Studio
to run on Android OS, using the open-source library OpenCV.
Upon acquiring the images of the unused test strip and the
color chart (Fig. 1A), the image processing is articulated into
different steps. First, the algorithm lters out the background
noise from the images, and extracts the regions of interest, i.e.
ages have the reference chart on the left and the test strip on the right.
tion function. (C) Image after expansion function. (D) Image after RGB-
) Image after the inRange function. (F) Image after the closing function.
n between (A) and (G). (I) Image after contours function, implemented

Anal. Methods, 2021, 13, 4361–4369 | 4363

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d1ay01209f


Analytical Methods Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
se

pt
em

br
a 

20
21

. D
ow

nl
oa

de
d 

on
 1

.1
1.

20
25

 3
:3

2:
48

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
the colored areas using the dilation function in OpenCV
(Fig. 1B). Following this, a series of consequent morphological
transformation is implemented. Each operation is performed
on the latest image obtained by the algorithm. Aer extracting
the colored areas, the expansion function is implemented to
enlarge the rectangles (Fig. 1C), followed by a transposition
from the RGB to the HSV space (Fig. 1D). The inRange function
is then applied to the transposed image, which is converted to
a binary image (Fig. 1E). The closing function is further
implemented to conform the object by closing small white holes
or black points (Fig. 1F), and the boundaries of the foreground
objects are cut away with the erosion function (Fig. 1G). The
further step involves the masking function, which applies
a logic AND operation between each pixel from two images. This
was implemented between the original image (Fig. 1A) and the
latest image obtained by the algorithm (Fig. 1G). The result is
a high-contrast image with clearly visible colored rectangles on
a black background (Fig. 1H).

The contours function is then implemented to ulteriorly
dene and isolate the colored areas, which are digitally stored
as a chart made of rows and columns. These are obtained from
Fig. 1G, implemented in Fig. 1H, and displayed in Fig. 1I. The
border assignment is necessary to further associate each row/
column to a specic analyte. The coherence between the orig-
inal order of the detected colored rectangles and their corre-
sponding analyte concentration is saved as indexes.

In the next step, the app is meant to detect the colors and
assign them to the corresponding rectangles for subsequent
evaluation. For this further processing, two algorithms are
implemented independently. The rst algorithm operates on
the CIE-xy space, the second algorithm on the HSV-xy space.
The smartphone application can be programmed either with
Fig. 2 Algorithm evaluation functions in the CIE-xy space (top) and HSV
functions. (B and E) Protein evaluation functions. (C and F) Glucose evalua
functions.

4364 | Anal. Methods, 2021, 13, 4361–4369
the rst or the second algorithm. In the CIE-xy algorithm the
processed images (Fig. 1I) are converted from the RGB to the
CIE-XYZ color space, from which the chromaticity coordinates x
and y are calculated for each colored square. When the user
performs a test with a urine strip and takes a photo, the test
strip colors are plotted in the same CIE-xy diagram and
compared to the reference colors. For each analyte, the distance
between the newly imaged color and the reference colors in the
CIE-xy plot is calculated by the algorithm by projecting the point
to the line segment connecting the two nearest reference points.
The concentration value corresponding to the reference color
point having the shortest distance is given as output, yielding
the theoretical “real-valued” index of the test point. This leads
to the theoretical “real-valued” index of the test point. The
indexes of the rectangles serve as x-values, the reference analyte
concentrations serve as y-values. The evaluation curve for an
analyte, based on the reference values, is either linear or
a piecewise cubic hermite interpolating polynomial, with the
reference values as supporting points.

Fig. 2A–C depicts the calculated real-value index from the
CIE-xy algorithm for pH (0–9 units), protein (0–500 mg dL�1),
and glucose (0–1000 mg dL�1), respectively. Consequently, with
the determined index of the test color point, an analyte
concentration is assigned to the test color point by means of the
corresponding evaluation function. Different analytes are
discriminated by their position along the strip, and this oper-
ation is performed independently for each analyte, to provide
a cumulative output for multiple biomarkers.

On the other hand, the HSV model acts primarily on the H-
values, whereas the S and the V values serve as additional
information to minimize the errors given by color saturation.
The H-values of the reference rectangles for each analyte serve
space (bottom) for pH, protein and glucose. (A and D) pH evaluation
tion functions. In all cases, the points mark the reference values for the

This journal is © The Royal Society of Chemistry 2021
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as x-value for the evaluation curve, while the reference analyte
concentrations serve as y-values. The HSV model operates
similarly to the CIE-xy model. The evaluation curves are dis-
played in Fig. 2D–F for pH, proteins, and glucose, respectively.
These evaluation functions determine the resulting analyte
concentration for a specic H-value of a colored area of the test
strip.
User interface

The user interface of the application guides the user to perform
the colorimetric analysis of the test strips step by step. The
home page of the application contains ve buttons (Fig. 3A).
The patient information button brings the user to a new window
where they can upload their personal details, to which all future
measurements can be assigned and stored in the form of trends
(Fig. 3B). If the name has been used before, the user can choose
an already existing prole. When a name is saved, it appears on
the main page. The name saving step can be skipped and run
the test as guest. The button start strip test bring the user to
a page where to take a photo of the reference chart (Fig. 3C) by
clicking the capture image button, which invokes the smart-
phone camera. When the picture is taken, its bitmap is shown
on the same layout page. The photo must be taken at normal
incidence, from 10 cm of distance (Fig. 3D). Aer conrming
Fig. 3 User interface of the application. (A) Main page with five buttons
name. (C) When the test is started, the user has to take a photo of the re
confirmation of the reference image, the user needs to take a photo of th
test results are displayed. Here, with exemplary values achieved by test
prevention tests are passed, an error report is displayed. (H) Previously ac
user who conducted it, can be recalled. (I) Reference values depicting n

This journal is © The Royal Society of Chemistry 2021
the photograph by choosing next, the same procedure starts for
capturing an image of the test strip (Fig. 3E). The next button
includes a feedback loop which prevents the user from going
further before an image is taken and uploaded. When a picture
of the test strip is taken successfully, the app brings out the
results page, where the analyte concentrations are displayed
(Fig. 3F). If the evaluation process failed, an error report is
shown (Fig. 3G). By clicking the button nish, the results are
saved, and the user gets back to the main page. The user may
look at past results by clicking the recall test results button
(Fig. 3H). The view reference data page allows to observe the
healthy reference values (Fig. 3I). The page instructions
contains information on how to carry on the measurements.
These instructions comprise the testing procedure, particularly
the angle at which the measurements should be taken.
Quantitative analysis

Urine is a typical body uid formed as metabolic waste in the
human kidney.29 Detection of analytes in urine can directly
report on health conditions at an early stage.30 The smartphone
application was tested using commercial colorimetric strips for
urinalysis, both buffer solutions (to test pH, proteins, glucose
concentrations) and a urine-based solution (to test glucose
concentration). Glucose detection was further implemented in
to decide how to proceed. (B) The user can input and save his or her
ference chart first. (D) Schematic of the smartphone imaging. (E) After
e test strip. (F) After successfully capturing the images in (D) and (E), the
ing with a buffer solution. (G) If an error occurred, e.g., if not all error
hieved test results, stored with the date of the test and the name of the
ormally expected values.

Anal. Methods, 2021, 13, 4361–4369 | 4365
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a human urine sample. The buffer solution (200 mL) was
deposited on the strips by drop casting using a pipette, the
excess liquid was removed by shaking the strip, as per
commercial protocol. Photographs were taken under constant
ambient lighting of 300 lux, at normal incidence and at 10 cm of
distance between the smartphone and the strip.

Fig. 4 illustrates the algorithm results for pH, protein, and
glucose detection from urine strips. Urinary pH varies from 4.5
to 8.0 units and it is correlated to the physiological health
status. Prolonged alkaline urine is a potential indicator of
infection with urea-splitting microbes; high acidic urine may be
a sign of diabetic ketoacidosis, gout, and diarrhea.31 Fig. 4A
displays the pH-dependent chromaticity diagram (i) which
includes the reference points, the test points, and the projected
test points. The correlation between theoretical pH values and
pH values measured by the algorithm is also shown (ii), with
standard deviation of 0.05 units, yielding a LOD of 0.13 pH
units. The inset shows the concentration-dependent color
variations from red (pH 5) to blue (pH 9). Such colors were
interpreted using the RGB and the HSV models. The trends of
individual components upon pH changes are plot in ESI
Fig. S1† for the (R, G, B) and the (H, S, V) spaces. The red
component was found to decrease from 155/255 to 2/255 upon
Fig. 4 Smartphone readout of pH, protein, and glucose urine tests using
values after color transformation from RGB to CIE-xy. Red points depict
green points depict the resulting points after projecting the white test
increase in pH value. (ii) Correlation between smartphone readout and
spaces. (B) Protein readout. (i) CIE 1931 chromaticity values after color tra
readout and theoretical protein concentrations in buffer solution, in the
glucose buffer solutions and human urine samples. (i) Zoom on the CIE 1
xy. (ii) Correlation between smartphone readout and theoretical glucos
space.

4366 | Anal. Methods, 2021, 13, 4361–4369
shiing the pH value from 5 to 9 units; the blue component was
found to increase from 55/255 to 65/255 in the same range. The
green component was found to uctuate around an average
value of 80/255, providing a nearly constant contribution. In the
HSV model, the H and the V values were found to increase from
200 to 230 and from 0 to 100, respectively. The S value was found
to decrease from 160 to 8 upon increasing the pH from 5 to 9
units.

The algorithm was tested in parallel for proteins levels in
buffer solutions containing PBS and bovine serum albumin
(BSA). The standard range of protein in human urine is 0–20 mg
dL�1, and higher concentrations indicate proteinuria, which is
a biomarker for kidney disease. Most healthy people have
a daily protein secretion of less than 150 mg, while a pregnant
woman level can exhibit protein levels in urine of about
300 mg.32 Fig. 4B displays the concentration-dependent chro-
maticity diagram (i) which includes the reference points, the
test points, and the projected test points. The correlation
between theoretical protein values and protein values measured
by the algorithm are also shown (ii), where the error bars are
covered by the points and were found to yield a standard devi-
ation of 3.08. Based on the plot, a LOD of 7.5 mg dL�1 was
calculated. The standard protein sensor displays a color change
the Colourine smartphone app. (A) pH readout. (i) CIE 1931 chromaticity
the reference points, white points depict the original tested points, and
points to the reference line segments. Arrow direction represents an
theoretical concentrations in buffer solution, in the CIE 1931 and HSV
nsformation from RGB to CIE-xy. (ii) Correlation between smartphone
CIE 1931 and HSV spaces. (C) Glucose readout, comparison between
931 chromaticity diagram after color transformation from RGB to CIE-
e concentrations in buffer solution and human urine, in the CIE 1931

This journal is © The Royal Society of Chemistry 2021
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from yellow to dark green when varying protein concentration
from 0 to 500 mg dL�1. The color chart is displayed as an inset.
Such colors were interpreted using the RGB and the HSV
models. The trends of individual components upon protein
changes are plot in ESI Fig. S2.† The red and green components
were found to decrease from 150/255 to 40/255 and from 120/
255 to 80/255 respectively, upon varying protein concentra-
tions from 0 to 500 mg dL�1. The blue component was found to
increase from 50/255 to 65/255 in the same range. In the HSV
model, the V values were found to decrease from 145 to 80, the
H component was found to increase from 20 to 80, and the S
component exhibited a decrease from 160, reaching
a minimum at 60 and further increased to 120.

As for protein and pH, the algorithm readout glucose
concentration in parallel. Normally, only a small amount of
glucose can be detected in healthy urine (0–0.8 mmol L�1).
Increased glucose level is an indication of kidney diseases or
injuries, and diabetes. Glycosuria is a common symptom of
diabetes. Glucose was tested both in buffer solution and in
human urine. Urine samples were obtained from a volunteer
and used the same day. The reliability of the smartphone
readout was double checked by testing the same urine samples
using test strips. Different glucose concentrations in urine were
Fig. 5 Influence of ambient lighting on color recognition (100–400 l
component; (ii) green component; (iii) blue component; (iv) CIE plot.
component; (ii) green component; (iii) blue component; (iv) CIE plot;
component; (ii) green component; (iii) blue component; (iv) CIE plot.

This journal is © The Royal Society of Chemistry 2021
obtained by adding glucose to the urine solution stepwise.
Fig. 4C shows a zoom on the region of interest of the chroma-
ticity plot in urine and buffer solutions (i). In both cases, the
diagrams display the test points, the projected test points, and
the reference colors. The inset shows the glucose-dependent
color variations from yellow (0 mg dL�1) to green (1000 mg
dL�1). The comparison between theoretical concentration of
glucose in urine/buffer solution and the CIE-xy Colourine app
readout is also shown (ii). In both cases, a high correlation was
observed. From a standard deviation of 8.71, a LOD of 22 mg
dL�1 was calculated. To better visualize the color contributions
and their correlation in urine and buffer solutions, individual
components are plot in ESI Fig. S3 and S4.† All components
displayed the exact same trends, with little variations which
were mainly visible at low glucose concentrations for R, G, H,
and V, and at intermediate concentrations for B and S.

The algorithm allowed to decrease the LOD by 4 folds for pH,
2.5 folds for glucose, and 2 folds for proteins. This technique
can be easily extended to multiple types of markers, providing
a portable and facile tool for standardize the readout of test
strips, as well as provide a digital database where the user can
check their trends over time. Hence, another advantage of the
readout method may play a role in turning a single snapshot
x). (A) Characterization of the pH sensor under 100–400 lx. (i) Red
(B) Characterization of the protein sensor under 100–400 lx. (i) Red
(C) characterization of the glucose sensor under 100–400 lx. (i) Red

Anal. Methods, 2021, 13, 4361–4369 | 4367
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test, such as the urine strip, in an actual continuous monitoring
platform by storing the data.

The background noise given by the ambient light contribu-
tion remains the main challenge in point-of-care optical
sensors. In this context, the Colourine app minimizes this
contribution by implementing two features. On one hand, the
background light is turned into a constant contribution by
asking the user to take a photo of the reference chart and the
bare test strip at the beginning of each test. The newly captured
test is then compared with the reference, and this allow to
subtract the background noise and operate at different light
levels. Furthermore, the HSV space is introduced to compensate
for the errors that remains in the RGB color space, considering
color intensity and saturation.

The algorithm was additionally tested at light levels of 100 lx,
200 lx and 400 lx, and the results were compared to the ones
obtained at standard illumination (300 lx, Fig. 5). Fig. 5A–C(i–
iii) display the comparison between concentration-dependent
red, green and blue components at light levels of 100, 200 and
400 lx for pH (A), protein (B) and glucose (C). It is possible to
observe that the curves show a similar trend with shied
intensity. This result is in accordance with previous works.20 At
400 lx, the R, G and B components are pronounced and closer to
255. At 200 lx their value decreases, reaching the minimum at
100 lx. It should be noted that, as shown in Fig. 5A–C(iv), the
color diagram displays that the variations in saturation and hue
are minimal, hence they can be associated to the correct nearest
neighbor in the color plot despite ambient light variations in
the range 100 to 400 lx.

In the protein color plot, the readout points display a higher
proximity compared with pH and glucose, attributed to the
narrower wavelength range of operation of the sensor. To obtain
a reliable output outside this ambient lighting range, an addi-
tional step may be added in the algorithm, such that different
calibration points are associated to different light levels. A
lightmeter may be added to the app, and the reference points of
interest could be selected based on the ambient light level.

To further improve this concept, a readout device may be
designed and supplied together with the test strip package. A
smartphone-compatible black box may be sufficient to optically
isolate the test strip while taking a photo with ash on, making
the smartphone torch the only light source. As an alternative,
the light source may be incorporated into the readout device to
compensate for differences between smartphones. In addition,
by adjusting the wavelengths of light sources and optical lters
in the readout device, the readout may be extended to other
chromogenic dyes,33 uorescent probes,34 diffraction gratings,35

and nanoparticles.36

Conclusion

Colourine smartphone app was developed to readout commer-
cial urine test strips, based on the CIE-xy nearest neighbor
algorithm, the RGB and the HSV color spaces. The app was
tested to detect pH, proteins and glucose in buffer solutions as
well as for glucose detection in human urine, resulting in a LOD
decrease by about 4 folds for pH, 2.5 folds for glucose, and 2
4368 | Anal. Methods, 2021, 13, 4361–4369
folds for proteins, compared to the visual method. The trans-
position to the HSV color space and the initial step of operation
which requires the user to take a photograph of the color chart,
allowed to compensate for environmental background light.
This was also demonstrated by testing the sensor at light levels
of 100, 200, 300 and 400 lx. This technique may be easily
extended to other optical readout applications, based on
colorimetric and uorescent sensors.
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