A novel ratiometric fluorescent probe from a hemicyanine derivative for detecting NAD(P)H in a cell microenvironment†
Abstract
In this paper, a fluorescent compound derived from coumarin and hemicyanine was synthesized and characterized. Herein, we present the fluorescence properties of the probe. Fluorescence selectivity experiments revealed that it exhibited higher ratiometric fluorescence response activity toward NAD(P)H than other commonly coexisting compounds in the cell microenvironment, in accord with the fluorescence shift from red to blue. In addition, the fluorescence identification mechanism was deduced to be a redox reaction between the sensor and NAD(P)H according to the fluorescence behavior. The ratiometric fluorescent probe provided an important theoretical basis for sensing NAD(P)H in vitro and in vivo. We also used this phenomenon to build a sensitive detection platform of NAD(P)H-dependent enzyme activity based on the fluorescence method.
- This article is part of the themed collection: Analytical Methods HOT Articles 2021