Advances in gold nanoparticles for mycotoxin analysis
Abstract
Mycotoxins are toxic secondary metabolites naturally produced by fungi. They can cause various kinds of acute and chronic diseases in both humans and animals since food usually contains trace amounts of mycotoxins. Thus, it is important to develop a rapid and sensitive technique for mycotoxin detection. Except for the original and classical enzyme-linked immunosorbent assays (ELISA), a series of biosensors has been developed to analyze mycotoxins in food in the last decade with the advantages of rapid analysis, simplicity, portability, reproducibility, stability, accuracy, and low cost. Nanomaterials have been incorporated into biosensors for the purpose of achieving better analytical performance in terms of limit of detection, linear range, analytical stability, low production cost, etc. Gold nanoparticles (AuNPs) are one of the most extensively studied and commonly used nanomaterials, which can be employed as an immobilization carrier, signal amplifier, mediator and mimic enzyme label. This paper aims to present an extensive overview of the recent progress in AuNPs in mycotoxin detection through ELISA and biosensors. The details of the detection methods and their application principles are described, and current challenges and future prospects are discussed as well.
- This article is part of the themed collection: Recent Review Articles