Optimising FRET-efficiency of Nd3+-sensitised upconversion nanocomposites by shortening the emitter–photosensitizer distance†
Abstract
Nd3+-Sensitised luminescent upconversion nanoparticles (UCNPs) have gained interest recently as theranostics due to their near-infrared (NIR) light excitation with a better tissue penetration depth. One example is the core/shell design NaYF4:Yb,Er@Nd,Yb. When harvesting the upconversion energy in such architectures, the long emitter–photosensitizer (i.e. Er3+–PS) distances lead to inefficient Förster resonance energy transfer (FRET). Herein, we report a new nanocomposite NaYF4:Nd,Yb@Yb@Yb,Er@Y with Nd3+ ions in the core and Er3+ ions in the shell to shorten the Er–PS distance to achieve better FRET. Furthermore, an outer non-emitting protective Y3+ shell and a conducting Yb3+ shell reduced surface quenching and Er3+-to-Nd3+ energy back transfer effects, respectively. The upconversion FRET and downshifting emission efficiencies were simultaneously optimised by adjusting the thickness of the Y3+ shell, and the FRET efficiency was at least 3.7 times that of the reference NaYF4:Yb,Er@Yb@Nd,Yb@Y in a photodynamic therapy (PDT) model.
- This article is part of the themed collection: Singlet fission and photon upconversion