Covalently anchoring cobalt phthalocyanine on zeolitic imidazolate frameworks for efficient carbon dioxide electroreduction†
Abstract
Transformation of CO2 into fuels has drawn great attention due to increasing carbon emission in recent years. Coupling metal–organic frameworks (MOFs) with molecular catalysts is a promising technique for boosting the efficiency of carbon dioxide capture and conversion. Herein, a CoTAPc–ZIF-90 hybrid catalyst is synthesized by decorating cobalt phthalocyanine on the outer surface of ZIF-90 through a Schiff base reaction. We demonstrate that the ZIF-90 substrate can cooperate with the cobalt active center to boost the electrocatalytic CO2 reduction performance. CoTAPc–ZIF-90 shows a large current density of 13 mA cm−2 for effective conversion of CO2 into CO in aqueous media at an overpotential of 0.86 V with a faradaic efficiency (FE) of 90%. What's more, the CoTAPc–ZIF-90 hybrid catalyst exhibits significantly higher catalyst stability compared with the free phthalocyanine molecule.
- This article is part of the themed collections: Crystal engineering for electrochemical applications and Editors collection: Metal Organic Frameworks as catalysts for water splitting and CO2 reduction