Ultrahigh-voltage integrated micro-supercapacitors with designable shapes and superior flexibility†‡
Abstract
With the development of power source-integrated electronics, the miniaturization of high-voltage integrated micro-supercapacitors (IMSCs) with multiple innovative form factors is urgently required but remains unsolved. Here, we demonstrate a universal, cost-effective, industrially applicable protocol for fast and scalable fabrication of graphene-based planar IMSCs, with shape diversity, aesthetic versatility, outstanding flexibility and superior modularization. Using highly-conducting graphene ink, we directly screen-print shape-designable IMSCs in several seconds, consisting of hundreds to thousands of individual MSCs on arbitrary substrates. The resulting IMSCs are free of external metal current collectors and interconnects as well as separators, and exhibit exceptional electrical double-layer capacitive behaviors and remarkable flexibility. Notably, the output voltage and capacitance of IMSCs are readily adjustable through connection in well-defined arrangements of MSCs. As a proof of concept, a tandem energy storage pack of IMSCs with 130 MSCs can output a recorded voltage exceeding 100 V, demonstrative of superior modularization and performance uniformity.
- This article is part of the themed collection: 2018 Energy and Environmental Science HOT Articles