gem-Dimethyl-substituted bis(imino)dihydroquinolines as thermally stable supports for highly active cobalt catalysts that produce linear PE waxes†
Abstract
Six types of 2,8-bis(imino)-7,7-dimethyl-5,6-dihydroquinoline, 2-(ArNCMe)-8-(ArN)-7,7-Me2C9H6N (Ar = 2,6-Me2C6H3L1, 2,6-Et2C6H3L2, 2,6-iPr2C6H3L3, 2,4,6-Me3C6H2L4, 2,6-Et2-4-MeC6H2L5, 2,4,6-tBu3C6H3L6), distinguishable by their steric and electronic profile, are described that can readily undergo complexation with cobaltous chloride to form their corresponding LCoCl2 chelates, Co1–Co6. The molecular structures of Co2 and Co3 reveal square pyramidal geometries with ring puckering a feature of the gem-dimethyl section of their unsymmetrical N,N,N′-ligands. On activation with either methylaluminoxane (MAO) or modified methylaluminoxane (MMAO), all the cobalt complexes exhibited exceptionally high activities for ethylene polymerization with levels reaching up to 1.19 × 107 g PE per mol (Co) per h for mesityl-containing Co4. Significantly, these catalysts exhibited good thermal stability by displaying their optimal performance at temperatures up to 70 °C whilst also maintaining appreciable catalytic lifetimes. With the exception of that obtained using the most sterically hindered Co6 (2,4,6-t-butyl), the polyethylenes are of low molecular weight (Mw ≤16.0 kg mol−1) and of narrow dispersity (Mw/Mn ≤3.4). Moreover, end-group analysis of these highly linear polymer waxes reveals evidence for unsaturated as well as various levels of fully saturated materials highlighting the role of both β-H elimination and chain transfer to aluminum as termination pathways.
- This article is part of the themed collection: Nitrogen Ligands