Native DNA electronics: is it a matter of nanoscale assembly?
Abstract
The genomic DNA is enveloped by nanotubes formed by the nuclear aggregates of polyamines (NAPs) that induce DNA conformational changes and provide protection and increased interaction abilities for the double strands. In a physiological environment, the nanotube arrangement is initiated by spontaneous interaction among the terminal amino groups of the polyamines and the phosphate ions, with the consequent formation of cyclic monomers that hook at the DNA grooves. The polymer thus formed has the morphological features of an organic semiconductor and therefore, it can be considered to be able to conduct electric charges. Phosphate ions positioned on the NAP external surface could regulate, as in a physical electric circuit, both linear and rotational (histones) protein motion, in accordance with the basilar principles of the electronics. A model of a carrier system for protein motion along the polymer wrapping the DNA strands, based on the phosphate–phosphate complexation, is proposed.
- This article is part of the themed collection: Recent Review Articles