Towards outstanding dielectric consumption derived from designing one-dimensional mesoporous MoO2/C hybrid heteronanowires†
Abstract
One-dimensional (1D) microwave absorbers have been verified to have a predominant morphology due to their significant anisotropy, large surface area, and great dielectric attenuation compared to other microstructures. Consequently, in this research, novel 1D mesoporous MoO2/C heteronanowires have been designed through an in situ facile synthesis process. As well as their attractive morphology, building multiple interfaces for polarization between MoO2 and carbon, inducing dipole polarization of MoO2 and constructing conductive networks among nanowires endow the composites with outstanding dielectric dissipated properties, allowing excellent microwave absorption (MA) performance. Therefore, at the appropriate filling condition of 25 wt%, the MoO2/C nanowire-paraffin achieved a minimum reflection loss of −47.6 dB at 11.1 GHz and a bandwidth of 3.8 GHz in the range of 9.9–13.7 GHz with a thickness of 2 mm, thus it has the potential to be a lightweight candidate of microwave absorbing material.
- This article is part of the themed collection: 2017 Journal of Materials Chemistry C HOT Papers