A systematic study on effects of precursors and solvents for optimization of solution-processed oxide semiconductor thin-film transistors†
Abstract
Solution-processed oxide semiconductor thin-film transistors (OS TFTs) have attracted much attention as a future display technology, because they have intrinsic properties such as flexibility and transparency as well as fabrication process advantages. Accordingly, to realize solution-processed high performance OS TFTs, various solutions have been developed. However, since it has been focused on the development of the solution itself, there have been no systematic approaches to independently study the effects of precursors and solvents for understanding and optimizing solution-processed OS TFTs. Here, we report a systematic study on the effects of precursors and solvents in solution-processed OS TFTs. Preferentially, InZnxOy (IZO) TFTs fabricated with various specific precursors and solvents are analyzed. It is confirmed that the electrical properties of IZO TFTs including field-effect mobility and Von are strongly affected by the types of precursors and solvents. Through various analyses including the TFT model, and X-ray based analyses, we discover that changes in the electrical properties are related to changes in the physical and intrinsic film properties of IZO films depending on the types of precursors and solvents. With observation of trends in the changes, the effects of precursors and solvents were investigated to better understand and optimize solution-processed OS TFTs.
- This article is part of the themed collection: 2017 Journal of Materials Chemistry C HOT Papers