P3-type K0.33Co0.53Mn0.47O2·0.39H2O: a novel bifunctional electrode for Na-ion batteries†
Abstract
A novel electrode material, P3-type K0.33Co0.53Mn0.47O2·0.39H2O (KCM), is synthesized through an easily-operated sol–gel method and it delivers considerable Na ion storage abilities when employed as both a cathode and an anode in NIBs. As a cathode, the compound displays remarkable average voltage potentials (over 3 V) and a high discharge capacity (114 mA h g−1 at 100 mA g−1). As an anode, a safe and ideal average voltage potential (0.53 V), a high discharge capacity (174 mA h g−1), and a long cycle life (950 cycles at 500 mA g−1) are also delivered together. In addition, a KCM-based full cell is subsequently built and even without any optimization it can still exhibit a high energy density (91 W h kg−1) accompanied by a long cycle performance (100 cycles at 100 mA g−1).
- This article is part of the themed collection: Horizons Community Board Collection – Advanced Energy Storage Technologies