Well-faceted noble-metal nanocrystals with nonconvex polyhedral shapes†
Abstract
Precise engineering of noble-metal nanocrystals (NCs) is not only an important fundamental research topic, but also has great realistic significance in improving their performances required by the poor reserve and high cost of noble metals. Well-faceted noble-metal NCs with nonconvex polyhedral shapes could be promising candidates to optimize their performance and thus minimize their usage, as they may integrate a well-defined surface structure and a large surface area together, enabling them to have outstanding performance and high efficiency of atomic utilization. Moreover, undesirable aggregation and ripening phenomena could be avoided. This review provides a comprehensive summary of the unique characteristics and corresponding models of well-faceted nonconvex polyhedral noble-metal NCs by classifying the cases into four distinct types, namely the concave polyhedral structure, excavated polyhedral structure, branched structure and nanocage structure, respectively. Due to the complexity of nonconvex morphologies and the thermodynamic antipathy for the growth of nonconvex shaped NCs, we firstly demonstrate the structure characterization and synthetic methodology in detail. Subsequently, typical applications in electrocatalysis and plasmonic fields are presented to demonstrate the unique surface and morphological effects generated from the well-faceted nonconvex NCs. To promote further development in this field, the perspectives and challenges concerning well-faceted noble-metal NCs with nonconvex shapes are put forward in the end.
- This article is part of the themed collection: Celebrating a Century of Excellency in Chemistry at Xiamen University